1       SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
  2      $                   DN1, DN2, TAU, TTYPE, G )
  3 *
  4 *  -- LAPACK routine (version 3.3.1)                                    --
  5 *
  6 *  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
  7 *  -- Laboratory and Beresford Parlett of the Univ. of California at  --
  8 *  -- Berkeley                                                        --
  9 *  -- November 2008                                                   --
 10 *
 11 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 12 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 13 *
 14 *     .. Scalar Arguments ..
 15       INTEGER            I0, N0, N0IN, PP, TTYPE
 16       DOUBLE PRECISION   DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
 17 *     ..
 18 *     .. Array Arguments ..
 19       DOUBLE PRECISION   Z( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  DLASQ4 computes an approximation TAU to the smallest eigenvalue
 26 *  using values of d from the previous transform.
 27 *
 28 *  Arguments
 29 *  =========
 30 *
 31 *  I0    (input) INTEGER
 32 *        First index.
 33 *
 34 *  N0    (input) INTEGER
 35 *        Last index.
 36 *
 37 *  Z     (input) DOUBLE PRECISION array, dimension ( 4*N )
 38 *        Z holds the qd array.
 39 *
 40 *  PP    (input) INTEGER
 41 *        PP=0 for ping, PP=1 for pong.
 42 *
 43 *  NOIN  (input) INTEGER
 44 *        The value of N0 at start of EIGTEST.
 45 *
 46 *  DMIN  (input) DOUBLE PRECISION
 47 *        Minimum value of d.
 48 *
 49 *  DMIN1 (input) DOUBLE PRECISION
 50 *        Minimum value of d, excluding D( N0 ).
 51 *
 52 *  DMIN2 (input) DOUBLE PRECISION
 53 *        Minimum value of d, excluding D( N0 ) and D( N0-1 ).
 54 *
 55 *  DN    (input) DOUBLE PRECISION
 56 *        d(N)
 57 *
 58 *  DN1   (input) DOUBLE PRECISION
 59 *        d(N-1)
 60 *
 61 *  DN2   (input) DOUBLE PRECISION
 62 *        d(N-2)
 63 *
 64 *  TAU   (output) DOUBLE PRECISION
 65 *        This is the shift.
 66 *
 67 *  TTYPE (output) INTEGER
 68 *        Shift type.
 69 *
 70 *  G     (input/output) REAL
 71 *        G is passed as an argument in order to save its value between
 72 *        calls to DLASQ4.
 73 *
 74 *  Further Details
 75 *  ===============
 76 *  CNST1 = 9/16
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   CNST1, CNST2, CNST3
 82       PARAMETER          ( CNST1 = 0.5630D0, CNST2 = 1.010D0,
 83      $                   CNST3 = 1.050D0 )
 84       DOUBLE PRECISION   QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
 85       PARAMETER          ( QURTR = 0.250D0, THIRD = 0.3330D0,
 86      $                   HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0,
 87      $                   TWO = 2.0D0, HUNDRD = 100.0D0 )
 88 *     ..
 89 *     .. Local Scalars ..
 90       INTEGER            I4, NN, NP
 91       DOUBLE PRECISION   A2, B1, B2, GAM, GAP1, GAP2, S
 92 *     ..
 93 *     .. Intrinsic Functions ..
 94       INTRINSIC          MAXMINSQRT
 95 *     ..
 96 *     .. Executable Statements ..
 97 *
 98 *     A negative DMIN forces the shift to take that absolute value
 99 *     TTYPE records the type of shift.
100 *
101       IF( DMIN.LE.ZERO ) THEN
102          TAU = -DMIN
103          TTYPE = -1
104          RETURN
105       END IF
106 *       
107       NN = 4*N0 + PP
108       IF( N0IN.EQ.N0 ) THEN
109 *
110 *        No eigenvalues deflated.
111 *
112          IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
113 *
114             B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
115             B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
116             A2 = Z( NN-7 ) + Z( NN-5 )
117 *
118 *           Cases 2 and 3.
119 *
120             IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
121                GAP2 = DMIN2 - A2 - DMIN2*QURTR
122                IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
123                   GAP1 = A2 - DN - ( B2 / GAP2 )*B2
124                ELSE
125                   GAP1 = A2 - DN - ( B1+B2 )
126                END IF
127                IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
128                   S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
129                   TTYPE = -2
130                ELSE
131                   S = ZERO
132                   IF( DN.GT.B1 )
133      $               S = DN - B1
134                   IF( A2.GT.( B1+B2 ) )
135      $               S = MIN( S, A2-( B1+B2 ) )
136                   S = MAX( S, THIRD*DMIN )
137                   TTYPE = -3
138                END IF
139             ELSE
140 *
141 *              Case 4.
142 *
143                TTYPE = -4
144                S = QURTR*DMIN
145                IF( DMIN.EQ.DN ) THEN
146                   GAM = DN
147                   A2 = ZERO
148                   IF( Z( NN-5 ) .GT. Z( NN-7 ) )
149      $               RETURN
150                   B2 = Z( NN-5 ) / Z( NN-7 )
151                   NP = NN - 9
152                ELSE
153                   NP = NN - 2*PP
154                   B2 = Z( NP-2 )
155                   GAM = DN1
156                   IF( Z( NP-4 ) .GT. Z( NP-2 ) )
157      $               RETURN
158                   A2 = Z( NP-4 ) / Z( NP-2 )
159                   IF( Z( NN-9 ) .GT. Z( NN-11 ) )
160      $               RETURN
161                   B2 = Z( NN-9 ) / Z( NN-11 )
162                   NP = NN - 13
163                END IF
164 *
165 *              Approximate contribution to norm squared from I < NN-1.
166 *
167                A2 = A2 + B2
168                DO 10 I4 = NP, 4*I0 - 1 + PP, -4
169                   IF( B2.EQ.ZERO )
170      $               GO TO 20
171                   B1 = B2
172                   IF( Z( I4 ) .GT. Z( I4-2 ) )
173      $               RETURN
174                   B2 = B2*( Z( I4 ) / Z( I4-2 ) )
175                   A2 = A2 + B2
176                   IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
177      $               GO TO 20
178    10          CONTINUE
179    20          CONTINUE
180                A2 = CNST3*A2
181 *
182 *              Rayleigh quotient residual bound.
183 *
184                IF( A2.LT.CNST1 )
185      $            S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
186             END IF
187          ELSE IF( DMIN.EQ.DN2 ) THEN
188 *
189 *           Case 5.
190 *
191             TTYPE = -5
192             S = QURTR*DMIN
193 *
194 *           Compute contribution to norm squared from I > NN-2.
195 *
196             NP = NN - 2*PP
197             B1 = Z( NP-2 )
198             B2 = Z( NP-6 )
199             GAM = DN2
200             IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
201      $         RETURN
202             A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
203 *
204 *           Approximate contribution to norm squared from I < NN-2.
205 *
206             IF( N0-I0.GT.2 ) THEN
207                B2 = Z( NN-13 ) / Z( NN-15 )
208                A2 = A2 + B2
209                DO 30 I4 = NN - 174*I0 - 1 + PP, -4
210                   IF( B2.EQ.ZERO )
211      $               GO TO 40
212                   B1 = B2
213                   IF( Z( I4 ) .GT. Z( I4-2 ) )
214      $               RETURN
215                   B2 = B2*( Z( I4 ) / Z( I4-2 ) )
216                   A2 = A2 + B2
217                   IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
218      $               GO TO 40
219    30          CONTINUE
220    40          CONTINUE
221                A2 = CNST3*A2
222             END IF
223 *
224             IF( A2.LT.CNST1 )
225      $         S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
226          ELSE
227 *
228 *           Case 6, no information to guide us.
229 *
230             IF( TTYPE.EQ.-6 ) THEN
231                G = G + THIRD*( ONE-G )
232             ELSE IF( TTYPE.EQ.-18 ) THEN
233                G = QURTR*THIRD
234             ELSE
235                G = QURTR
236             END IF
237             S = G*DMIN
238             TTYPE = -6
239          END IF
240 *
241       ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
242 *
243 *        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
244 *
245          IFDMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN 
246 *
247 *           Cases 7 and 8.
248 *
249             TTYPE = -7
250             S = THIRD*DMIN1
251             IF( Z( NN-5 ).GT.Z( NN-7 ) )
252      $         RETURN
253             B1 = Z( NN-5 ) / Z( NN-7 )
254             B2 = B1
255             IF( B2.EQ.ZERO )
256      $         GO TO 60
257             DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
258                A2 = B1
259                IF( Z( I4 ).GT.Z( I4-2 ) )
260      $            RETURN
261                B1 = B1*( Z( I4 ) / Z( I4-2 ) )
262                B2 = B2 + B1
263                IF( HUNDRD*MAX( B1, A2 ).LT.B2 ) 
264      $            GO TO 60
265    50       CONTINUE
266    60       CONTINUE
267             B2 = SQRT( CNST3*B2 )
268             A2 = DMIN1 / ( ONE+B2**2 )
269             GAP2 = HALF*DMIN2 - A2
270             IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
271                S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
272             ELSE 
273                S = MAX( S, A2*( ONE-CNST2*B2 ) )
274                TTYPE = -8
275             END IF
276          ELSE
277 *
278 *           Case 9.
279 *
280             S = QURTR*DMIN1
281             IFDMIN1.EQ.DN1 )
282      $         S = HALF*DMIN1
283             TTYPE = -9
284          END IF
285 *
286       ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
287 *
288 *        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
289 *
290 *        Cases 10 and 11.
291 *
292          IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN 
293             TTYPE = -10
294             S = THIRD*DMIN2
295             IF( Z( NN-5 ).GT.Z( NN-7 ) )
296      $         RETURN
297             B1 = Z( NN-5 ) / Z( NN-7 )
298             B2 = B1
299             IF( B2.EQ.ZERO )
300      $         GO TO 80
301             DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
302                IF( Z( I4 ).GT.Z( I4-2 ) )
303      $            RETURN
304                B1 = B1*( Z( I4 ) / Z( I4-2 ) )
305                B2 = B2 + B1
306                IF( HUNDRD*B1.LT.B2 )
307      $            GO TO 80
308    70       CONTINUE
309    80       CONTINUE
310             B2 = SQRT( CNST3*B2 )
311             A2 = DMIN2 / ( ONE+B2**2 )
312             GAP2 = Z( NN-7 ) + Z( NN-9 ) -
313      $             SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
314             IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
315                S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
316             ELSE 
317                S = MAX( S, A2*( ONE-CNST2*B2 ) )
318             END IF
319          ELSE
320             S = QURTR*DMIN2
321             TTYPE = -11
322          END IF
323       ELSE IF( N0IN.GT.( N0+2 ) ) THEN
324 *
325 *        Case 12, more than two eigenvalues deflated. No information.
326 *
327          S = ZERO 
328          TTYPE = -12
329       END IF
330 *
331       TAU = S
332       RETURN
333 *
334 *     End of DLASQ4
335 *
336       END