1       SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
  2      $                   LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            LTRANL, LTRANR
 11       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
 12       DOUBLE PRECISION   SCALE, XNORM
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
 16      $                   X( LDX, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
 23 *
 24 *         op(TL)*X + ISGN*X*op(TR) = SCALE*B,
 25 *
 26 *  where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
 27 *  -1.  op(T) = T or T**T, where T**T denotes the transpose of T.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  LTRANL  (input) LOGICAL
 33 *          On entry, LTRANL specifies the op(TL):
 34 *             = .FALSE., op(TL) = TL,
 35 *             = .TRUE., op(TL) = TL**T.
 36 *
 37 *  LTRANR  (input) LOGICAL
 38 *          On entry, LTRANR specifies the op(TR):
 39 *            = .FALSE., op(TR) = TR,
 40 *            = .TRUE., op(TR) = TR**T.
 41 *
 42 *  ISGN    (input) INTEGER
 43 *          On entry, ISGN specifies the sign of the equation
 44 *          as described before. ISGN may only be 1 or -1.
 45 *
 46 *  N1      (input) INTEGER
 47 *          On entry, N1 specifies the order of matrix TL.
 48 *          N1 may only be 0, 1 or 2.
 49 *
 50 *  N2      (input) INTEGER
 51 *          On entry, N2 specifies the order of matrix TR.
 52 *          N2 may only be 0, 1 or 2.
 53 *
 54 *  TL      (input) DOUBLE PRECISION array, dimension (LDTL,2)
 55 *          On entry, TL contains an N1 by N1 matrix.
 56 *
 57 *  LDTL    (input) INTEGER
 58 *          The leading dimension of the matrix TL. LDTL >= max(1,N1).
 59 *
 60 *  TR      (input) DOUBLE PRECISION array, dimension (LDTR,2)
 61 *          On entry, TR contains an N2 by N2 matrix.
 62 *
 63 *  LDTR    (input) INTEGER
 64 *          The leading dimension of the matrix TR. LDTR >= max(1,N2).
 65 *
 66 *  B       (input) DOUBLE PRECISION array, dimension (LDB,2)
 67 *          On entry, the N1 by N2 matrix B contains the right-hand
 68 *          side of the equation.
 69 *
 70 *  LDB     (input) INTEGER
 71 *          The leading dimension of the matrix B. LDB >= max(1,N1).
 72 *
 73 *  SCALE   (output) DOUBLE PRECISION
 74 *          On exit, SCALE contains the scale factor. SCALE is chosen
 75 *          less than or equal to 1 to prevent the solution overflowing.
 76 *
 77 *  X       (output) DOUBLE PRECISION array, dimension (LDX,2)
 78 *          On exit, X contains the N1 by N2 solution.
 79 *
 80 *  LDX     (input) INTEGER
 81 *          The leading dimension of the matrix X. LDX >= max(1,N1).
 82 *
 83 *  XNORM   (output) DOUBLE PRECISION
 84 *          On exit, XNORM is the infinity-norm of the solution.
 85 *
 86 *  INFO    (output) INTEGER
 87 *          On exit, INFO is set to
 88 *             0: successful exit.
 89 *             1: TL and TR have too close eigenvalues, so TL or
 90 *                TR is perturbed to get a nonsingular equation.
 91 *          NOTE: In the interests of speed, this routine does not
 92 *                check the inputs for errors.
 93 *
 94 * =====================================================================
 95 *
 96 *     .. Parameters ..
 97       DOUBLE PRECISION   ZERO, ONE
 98       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 99       DOUBLE PRECISION   TWO, HALF, EIGHT
100       PARAMETER          ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
101 *     ..
102 *     .. Local Scalars ..
103       LOGICAL            BSWAP, XSWAP
104       INTEGER            I, IP, IPIV, IPSV, J, JP, JPSV, K
105       DOUBLE PRECISION   BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
106      $                   TEMP, U11, U12, U22, XMAX
107 *     ..
108 *     .. Local Arrays ..
109       LOGICAL            BSWPIV( 4 ), XSWPIV( 4 )
110       INTEGER            JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
111      $                   LOCU22( 4 )
112       DOUBLE PRECISION   BTMP( 4 ), T16( 44 ), TMP( 4 ), X2( 2 )
113 *     ..
114 *     .. External Functions ..
115       INTEGER            IDAMAX
116       DOUBLE PRECISION   DLAMCH
117       EXTERNAL           IDAMAX, DLAMCH
118 *     ..
119 *     .. External Subroutines ..
120       EXTERNAL           DCOPY, DSWAP
121 *     ..
122 *     .. Intrinsic Functions ..
123       INTRINSIC          ABSMAX
124 *     ..
125 *     .. Data statements ..
126       DATA               LOCU12 / 3412 / , LOCL21 / 2143 / ,
127      $                   LOCU22 / 4321 /
128       DATA               XSWPIV / .FALSE..FALSE..TRUE..TRUE. /
129       DATA               BSWPIV / .FALSE..TRUE..FALSE..TRUE. /
130 *     ..
131 *     .. Executable Statements ..
132 *
133 *     Do not check the input parameters for errors
134 *
135       INFO = 0
136 *
137 *     Quick return if possible
138 *
139       IF( N1.EQ.0 .OR. N2.EQ.0 )
140      $   RETURN
141 *
142 *     Set constants to control overflow
143 *
144       EPS = DLAMCH( 'P' )
145       SMLNUM = DLAMCH( 'S' ) / EPS
146       SGN = ISGN
147 *
148       K = N1 + N1 + N2 - 2
149       GO TO ( 10203050 )K
150 *
151 *     1 by 1: TL11*X + SGN*X*TR11 = B11
152 *
153    10 CONTINUE
154       TAU1 = TL( 11 ) + SGN*TR( 11 )
155       BET = ABS( TAU1 )
156       IF( BET.LE.SMLNUM ) THEN
157          TAU1 = SMLNUM
158          BET = SMLNUM
159          INFO = 1
160       END IF
161 *
162       SCALE = ONE
163       GAM = ABS( B( 11 ) )
164       IF( SMLNUM*GAM.GT.BET )
165      $   SCALE = ONE / GAM
166 *
167       X( 11 ) = ( B( 11 )*SCALE ) / TAU1
168       XNORM = ABS( X( 11 ) )
169       RETURN
170 *
171 *     1 by 2:
172 *     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12]
173 *                                       [TR21 TR22]
174 *
175    20 CONTINUE
176 *
177       SMIN = MAX( EPS*MAXABS( TL( 11 ) ), ABS( TR( 11 ) ),
178      $       ABS( TR( 12 ) ), ABS( TR( 21 ) ), ABS( TR( 22 ) ) ),
179      $       SMLNUM )
180       TMP( 1 ) = TL( 11 ) + SGN*TR( 11 )
181       TMP( 4 ) = TL( 11 ) + SGN*TR( 22 )
182       IF( LTRANR ) THEN
183          TMP( 2 ) = SGN*TR( 21 )
184          TMP( 3 ) = SGN*TR( 12 )
185       ELSE
186          TMP( 2 ) = SGN*TR( 12 )
187          TMP( 3 ) = SGN*TR( 21 )
188       END IF
189       BTMP( 1 ) = B( 11 )
190       BTMP( 2 ) = B( 12 )
191       GO TO 40
192 *
193 *     2 by 1:
194 *          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11]
195 *            [TL21 TL22] [X21]         [X21]         [B21]
196 *
197    30 CONTINUE
198       SMIN = MAX( EPS*MAXABS( TR( 11 ) ), ABS( TL( 11 ) ),
199      $       ABS( TL( 12 ) ), ABS( TL( 21 ) ), ABS( TL( 22 ) ) ),
200      $       SMLNUM )
201       TMP( 1 ) = TL( 11 ) + SGN*TR( 11 )
202       TMP( 4 ) = TL( 22 ) + SGN*TR( 11 )
203       IF( LTRANL ) THEN
204          TMP( 2 ) = TL( 12 )
205          TMP( 3 ) = TL( 21 )
206       ELSE
207          TMP( 2 ) = TL( 21 )
208          TMP( 3 ) = TL( 12 )
209       END IF
210       BTMP( 1 ) = B( 11 )
211       BTMP( 2 ) = B( 21 )
212    40 CONTINUE
213 *
214 *     Solve 2 by 2 system using complete pivoting.
215 *     Set pivots less than SMIN to SMIN.
216 *
217       IPIV = IDAMAX( 4, TMP, 1 )
218       U11 = TMP( IPIV )
219       IFABS( U11 ).LE.SMIN ) THEN
220          INFO = 1
221          U11 = SMIN
222       END IF
223       U12 = TMP( LOCU12( IPIV ) )
224       L21 = TMP( LOCL21( IPIV ) ) / U11
225       U22 = TMP( LOCU22( IPIV ) ) - U12*L21
226       XSWAP = XSWPIV( IPIV )
227       BSWAP = BSWPIV( IPIV )
228       IFABS( U22 ).LE.SMIN ) THEN
229          INFO = 1
230          U22 = SMIN
231       END IF
232       IF( BSWAP ) THEN
233          TEMP = BTMP( 2 )
234          BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
235          BTMP( 1 ) = TEMP
236       ELSE
237          BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
238       END IF
239       SCALE = ONE
240       IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
241      $    ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
242          SCALE = HALF / MAXABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
243          BTMP( 1 ) = BTMP( 1 )*SCALE
244          BTMP( 2 ) = BTMP( 2 )*SCALE
245       END IF
246       X2( 2 ) = BTMP( 2 ) / U22
247       X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
248       IF( XSWAP ) THEN
249          TEMP = X2( 2 )
250          X2( 2 ) = X2( 1 )
251          X2( 1 ) = TEMP
252       END IF
253       X( 11 ) = X2( 1 )
254       IF( N1.EQ.1 ) THEN
255          X( 12 ) = X2( 2 )
256          XNORM = ABS( X( 11 ) ) + ABS( X( 12 ) )
257       ELSE
258          X( 21 ) = X2( 2 )
259          XNORM = MAXABS( X( 11 ) ), ABS( X( 21 ) ) )
260       END IF
261       RETURN
262 *
263 *     2 by 2:
264 *     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
265 *       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22]
266 *
267 *     Solve equivalent 4 by 4 system using complete pivoting.
268 *     Set pivots less than SMIN to SMIN.
269 *
270    50 CONTINUE
271       SMIN = MAXABS( TR( 11 ) ), ABS( TR( 12 ) ),
272      $       ABS( TR( 21 ) ), ABS( TR( 22 ) ) )
273       SMIN = MAX( SMIN, ABS( TL( 11 ) ), ABS( TL( 12 ) ),
274      $       ABS( TL( 21 ) ), ABS( TL( 22 ) ) )
275       SMIN = MAX( EPS*SMIN, SMLNUM )
276       BTMP( 1 ) = ZERO
277       CALL DCOPY( 16, BTMP, 0, T16, 1 )
278       T16( 11 ) = TL( 11 ) + SGN*TR( 11 )
279       T16( 22 ) = TL( 22 ) + SGN*TR( 11 )
280       T16( 33 ) = TL( 11 ) + SGN*TR( 22 )
281       T16( 44 ) = TL( 22 ) + SGN*TR( 22 )
282       IF( LTRANL ) THEN
283          T16( 12 ) = TL( 21 )
284          T16( 21 ) = TL( 12 )
285          T16( 34 ) = TL( 21 )
286          T16( 43 ) = TL( 12 )
287       ELSE
288          T16( 12 ) = TL( 12 )
289          T16( 21 ) = TL( 21 )
290          T16( 34 ) = TL( 12 )
291          T16( 43 ) = TL( 21 )
292       END IF
293       IF( LTRANR ) THEN
294          T16( 13 ) = SGN*TR( 12 )
295          T16( 24 ) = SGN*TR( 12 )
296          T16( 31 ) = SGN*TR( 21 )
297          T16( 42 ) = SGN*TR( 21 )
298       ELSE
299          T16( 13 ) = SGN*TR( 21 )
300          T16( 24 ) = SGN*TR( 21 )
301          T16( 31 ) = SGN*TR( 12 )
302          T16( 42 ) = SGN*TR( 12 )
303       END IF
304       BTMP( 1 ) = B( 11 )
305       BTMP( 2 ) = B( 21 )
306       BTMP( 3 ) = B( 12 )
307       BTMP( 4 ) = B( 22 )
308 *
309 *     Perform elimination
310 *
311       DO 100 I = 13
312          XMAX = ZERO
313          DO 70 IP = I, 4
314             DO 60 JP = I, 4
315                IFABS( T16( IP, JP ) ).GE.XMAX ) THEN
316                   XMAX = ABS( T16( IP, JP ) )
317                   IPSV = IP
318                   JPSV = JP
319                END IF
320    60       CONTINUE
321    70    CONTINUE
322          IF( IPSV.NE.I ) THEN
323             CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
324             TEMP = BTMP( I )
325             BTMP( I ) = BTMP( IPSV )
326             BTMP( IPSV ) = TEMP
327          END IF
328          IF( JPSV.NE.I )
329      $      CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
330          JPIV( I ) = JPSV
331          IFABS( T16( I, I ) ).LT.SMIN ) THEN
332             INFO = 1
333             T16( I, I ) = SMIN
334          END IF
335          DO 90 J = I + 14
336             T16( J, I ) = T16( J, I ) / T16( I, I )
337             BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
338             DO 80 K = I + 14
339                T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
340    80       CONTINUE
341    90    CONTINUE
342   100 CONTINUE
343       IFABS( T16( 44 ) ).LT.SMIN )
344      $   T16( 44 ) = SMIN
345       SCALE = ONE
346       IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 11 ) ) .OR.
347      $    ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 22 ) ) .OR.
348      $    ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 33 ) ) .OR.
349      $    ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 44 ) ) ) THEN
350          SCALE = ( ONE / EIGHT ) / MAXABS( BTMP( 1 ) ),
351      $           ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
352          BTMP( 1 ) = BTMP( 1 )*SCALE
353          BTMP( 2 ) = BTMP( 2 )*SCALE
354          BTMP( 3 ) = BTMP( 3 )*SCALE
355          BTMP( 4 ) = BTMP( 4 )*SCALE
356       END IF
357       DO 120 I = 14
358          K = 5 - I
359          TEMP = ONE / T16( K, K )
360          TMP( K ) = BTMP( K )*TEMP
361          DO 110 J = K + 14
362             TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
363   110    CONTINUE
364   120 CONTINUE
365       DO 130 I = 13
366          IF( JPIV( 4-I ).NE.4-I ) THEN
367             TEMP = TMP( 4-I )
368             TMP( 4-I ) = TMP( JPIV( 4-I ) )
369             TMP( JPIV( 4-I ) ) = TEMP
370          END IF
371   130 CONTINUE
372       X( 11 ) = TMP( 1 )
373       X( 21 ) = TMP( 2 )
374       X( 12 ) = TMP( 3 )
375       X( 22 ) = TMP( 4 )
376       XNORM = MAXABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
377      $        ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
378       RETURN
379 *
380 *     End of DLASY2
381 *
382       END