1       SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  2      $                   SCALE, CNORM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 11       INTEGER            INFO, KD, LDAB, N
 12       DOUBLE PRECISION   SCALE
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   AB( LDAB, * ), CNORM( * ), X( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DLATBS solves one of the triangular systems
 22 *
 23 *     A *x = s*b  or  A**T*x = s*b
 24 *
 25 *  with scaling to prevent overflow, where A is an upper or lower
 26 *  triangular band matrix.  Here A**T denotes the transpose of A, x and b
 27 *  are n-element vectors, and s is a scaling factor, usually less than
 28 *  or equal to 1, chosen so that the components of x will be less than
 29 *  the overflow threshold.  If the unscaled problem will not cause
 30 *  overflow, the Level 2 BLAS routine DTBSV is called.  If the matrix A
 31 *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
 32 *  non-trivial solution to A*x = 0 is returned.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the matrix A is upper or lower triangular.
 39 *          = 'U':  Upper triangular
 40 *          = 'L':  Lower triangular
 41 *
 42 *  TRANS   (input) CHARACTER*1
 43 *          Specifies the operation applied to A.
 44 *          = 'N':  Solve A * x = s*b  (No transpose)
 45 *          = 'T':  Solve A**T* x = s*b  (Transpose)
 46 *          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
 47 *
 48 *  DIAG    (input) CHARACTER*1
 49 *          Specifies whether or not the matrix A is unit triangular.
 50 *          = 'N':  Non-unit triangular
 51 *          = 'U':  Unit triangular
 52 *
 53 *  NORMIN  (input) CHARACTER*1
 54 *          Specifies whether CNORM has been set or not.
 55 *          = 'Y':  CNORM contains the column norms on entry
 56 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
 57 *                  be computed and stored in CNORM.
 58 *
 59 *  N       (input) INTEGER
 60 *          The order of the matrix A.  N >= 0.
 61 *
 62 *  KD      (input) INTEGER
 63 *          The number of subdiagonals or superdiagonals in the
 64 *          triangular matrix A.  KD >= 0.
 65 *
 66 *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 67 *          The upper or lower triangular band matrix A, stored in the
 68 *          first KD+1 rows of the array. The j-th column of A is stored
 69 *          in the j-th column of the array AB as follows:
 70 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 71 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 72 *
 73 *  LDAB    (input) INTEGER
 74 *          The leading dimension of the array AB.  LDAB >= KD+1.
 75 *
 76 *  X       (input/output) DOUBLE PRECISION array, dimension (N)
 77 *          On entry, the right hand side b of the triangular system.
 78 *          On exit, X is overwritten by the solution vector x.
 79 *
 80 *  SCALE   (output) DOUBLE PRECISION
 81 *          The scaling factor s for the triangular system
 82 *             A * x = s*b  or  A**T* x = s*b.
 83 *          If SCALE = 0, the matrix A is singular or badly scaled, and
 84 *          the vector x is an exact or approximate solution to A*x = 0.
 85 *
 86 *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
 87 *
 88 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 89 *          contains the norm of the off-diagonal part of the j-th column
 90 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 91 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 92 *          must be greater than or equal to the 1-norm.
 93 *
 94 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 95 *          returns the 1-norm of the offdiagonal part of the j-th column
 96 *          of A.
 97 *
 98 *  INFO    (output) INTEGER
 99 *          = 0:  successful exit
100 *          < 0:  if INFO = -k, the k-th argument had an illegal value
101 *
102 *  Further Details
103 *  ======= =======
104 *
105 *  A rough bound on x is computed; if that is less than overflow, DTBSV
106 *  is called, otherwise, specific code is used which checks for possible
107 *  overflow or divide-by-zero at every operation.
108 *
109 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
110 *  if A is lower triangular is
111 *
112 *       x[1:n] := b[1:n]
113 *       for j = 1, ..., n
114 *            x(j) := x(j) / A(j,j)
115 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
116 *       end
117 *
118 *  Define bounds on the components of x after j iterations of the loop:
119 *     M(j) = bound on x[1:j]
120 *     G(j) = bound on x[j+1:n]
121 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
122 *
123 *  Then for iteration j+1 we have
124 *     M(j+1) <= G(j) / | A(j+1,j+1) |
125 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
126 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
127 *
128 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
129 *  column j+1 of A, not counting the diagonal.  Hence
130 *
131 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
132 *                  1<=i<=j
133 *  and
134 *
135 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
136 *                                   1<=i< j
137 *
138 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
139 *  reciprocal of the largest M(j), j=1,..,n, is larger than
140 *  max(underflow, 1/overflow).
141 *
142 *  The bound on x(j) is also used to determine when a step in the
143 *  columnwise method can be performed without fear of overflow.  If
144 *  the computed bound is greater than a large constant, x is scaled to
145 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
146 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
147 *
148 *  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
149 *  algorithm for A upper triangular is
150 *
151 *       for j = 1, ..., n
152 *            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
153 *       end
154 *
155 *  We simultaneously compute two bounds
156 *       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
157 *       M(j) = bound on x(i), 1<=i<=j
158 *
159 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
160 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
161 *  Then the bound on x(j) is
162 *
163 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
164 *
165 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
166 *                      1<=i<=j
167 *
168 *  and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
169 *  than max(underflow, 1/overflow).
170 *
171 *  =====================================================================
172 *
173 *     .. Parameters ..
174       DOUBLE PRECISION   ZERO, HALF, ONE
175       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
176 *     ..
177 *     .. Local Scalars ..
178       LOGICAL            NOTRAN, NOUNIT, UPPER
179       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
180       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
181      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
182 *     ..
183 *     .. External Functions ..
184       LOGICAL            LSAME
185       INTEGER            IDAMAX
186       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
187       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
188 *     ..
189 *     .. External Subroutines ..
190       EXTERNAL           DAXPY, DSCAL, DTBSV, XERBLA
191 *     ..
192 *     .. Intrinsic Functions ..
193       INTRINSIC          ABSMAXMIN
194 *     ..
195 *     .. Executable Statements ..
196 *
197       INFO = 0
198       UPPER = LSAME( UPLO, 'U' )
199       NOTRAN = LSAME( TRANS, 'N' )
200       NOUNIT = LSAME( DIAG, 'N' )
201 *
202 *     Test the input parameters.
203 *
204       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
205          INFO = -1
206       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
207      $         LSAME( TRANS, 'C' ) ) THEN
208          INFO = -2
209       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
210          INFO = -3
211       ELSE IF.NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
212      $         LSAME( NORMIN, 'N' ) ) THEN
213          INFO = -4
214       ELSE IF( N.LT.0 ) THEN
215          INFO = -5
216       ELSE IF( KD.LT.0 ) THEN
217          INFO = -6
218       ELSE IF( LDAB.LT.KD+1 ) THEN
219          INFO = -8
220       END IF
221       IF( INFO.NE.0 ) THEN
222          CALL XERBLA( 'DLATBS'-INFO )
223          RETURN
224       END IF
225 *
226 *     Quick return if possible
227 *
228       IF( N.EQ.0 )
229      $   RETURN
230 *
231 *     Determine machine dependent parameters to control overflow.
232 *
233       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
234       BIGNUM = ONE / SMLNUM
235       SCALE = ONE
236 *
237       IF( LSAME( NORMIN, 'N' ) ) THEN
238 *
239 *        Compute the 1-norm of each column, not including the diagonal.
240 *
241          IF( UPPER ) THEN
242 *
243 *           A is upper triangular.
244 *
245             DO 10 J = 1, N
246                JLEN = MIN( KD, J-1 )
247                CNORM( J ) = DASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
248    10       CONTINUE
249          ELSE
250 *
251 *           A is lower triangular.
252 *
253             DO 20 J = 1, N
254                JLEN = MIN( KD, N-J )
255                IF( JLEN.GT.0 ) THEN
256                   CNORM( J ) = DASUM( JLEN, AB( 2, J ), 1 )
257                ELSE
258                   CNORM( J ) = ZERO
259                END IF
260    20       CONTINUE
261          END IF
262       END IF
263 *
264 *     Scale the column norms by TSCAL if the maximum element in CNORM is
265 *     greater than BIGNUM.
266 *
267       IMAX = IDAMAX( N, CNORM, 1 )
268       TMAX = CNORM( IMAX )
269       IF( TMAX.LE.BIGNUM ) THEN
270          TSCAL = ONE
271       ELSE
272          TSCAL = ONE / ( SMLNUM*TMAX )
273          CALL DSCAL( N, TSCAL, CNORM, 1 )
274       END IF
275 *
276 *     Compute a bound on the computed solution vector to see if the
277 *     Level 2 BLAS routine DTBSV can be used.
278 *
279       J = IDAMAX( N, X, 1 )
280       XMAX = ABS( X( J ) )
281       XBND = XMAX
282       IF( NOTRAN ) THEN
283 *
284 *        Compute the growth in A * x = b.
285 *
286          IF( UPPER ) THEN
287             JFIRST = N
288             JLAST = 1
289             JINC = -1
290             MAIND = KD + 1
291          ELSE
292             JFIRST = 1
293             JLAST = N
294             JINC = 1
295             MAIND = 1
296          END IF
297 *
298          IF( TSCAL.NE.ONE ) THEN
299             GROW = ZERO
300             GO TO 50
301          END IF
302 *
303          IF( NOUNIT ) THEN
304 *
305 *           A is non-unit triangular.
306 *
307 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
308 *           Initially, G(0) = max{x(i), i=1,...,n}.
309 *
310             GROW = ONE / MAX( XBND, SMLNUM )
311             XBND = GROW
312             DO 30 J = JFIRST, JLAST, JINC
313 *
314 *              Exit the loop if the growth factor is too small.
315 *
316                IF( GROW.LE.SMLNUM )
317      $            GO TO 50
318 *
319 *              M(j) = G(j-1) / abs(A(j,j))
320 *
321                TJJ = ABS( AB( MAIND, J ) )
322                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
323                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
324 *
325 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
326 *
327                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
328                ELSE
329 *
330 *                 G(j) could overflow, set GROW to 0.
331 *
332                   GROW = ZERO
333                END IF
334    30       CONTINUE
335             GROW = XBND
336          ELSE
337 *
338 *           A is unit triangular.
339 *
340 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
341 *
342             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
343             DO 40 J = JFIRST, JLAST, JINC
344 *
345 *              Exit the loop if the growth factor is too small.
346 *
347                IF( GROW.LE.SMLNUM )
348      $            GO TO 50
349 *
350 *              G(j) = G(j-1)*( 1 + CNORM(j) )
351 *
352                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
353    40       CONTINUE
354          END IF
355    50    CONTINUE
356 *
357       ELSE
358 *
359 *        Compute the growth in A**T * x = b.
360 *
361          IF( UPPER ) THEN
362             JFIRST = 1
363             JLAST = N
364             JINC = 1
365             MAIND = KD + 1
366          ELSE
367             JFIRST = N
368             JLAST = 1
369             JINC = -1
370             MAIND = 1
371          END IF
372 *
373          IF( TSCAL.NE.ONE ) THEN
374             GROW = ZERO
375             GO TO 80
376          END IF
377 *
378          IF( NOUNIT ) THEN
379 *
380 *           A is non-unit triangular.
381 *
382 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
383 *           Initially, M(0) = max{x(i), i=1,...,n}.
384 *
385             GROW = ONE / MAX( XBND, SMLNUM )
386             XBND = GROW
387             DO 60 J = JFIRST, JLAST, JINC
388 *
389 *              Exit the loop if the growth factor is too small.
390 *
391                IF( GROW.LE.SMLNUM )
392      $            GO TO 80
393 *
394 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
395 *
396                XJ = ONE + CNORM( J )
397                GROW = MIN( GROW, XBND / XJ )
398 *
399 *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
400 *
401                TJJ = ABS( AB( MAIND, J ) )
402                IF( XJ.GT.TJJ )
403      $            XBND = XBND*( TJJ / XJ )
404    60       CONTINUE
405             GROW = MIN( GROW, XBND )
406          ELSE
407 *
408 *           A is unit triangular.
409 *
410 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
411 *
412             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
413             DO 70 J = JFIRST, JLAST, JINC
414 *
415 *              Exit the loop if the growth factor is too small.
416 *
417                IF( GROW.LE.SMLNUM )
418      $            GO TO 80
419 *
420 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
421 *
422                XJ = ONE + CNORM( J )
423                GROW = GROW / XJ
424    70       CONTINUE
425          END IF
426    80    CONTINUE
427       END IF
428 *
429       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
430 *
431 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
432 *        elements of X is not too small.
433 *
434          CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
435       ELSE
436 *
437 *        Use a Level 1 BLAS solve, scaling intermediate results.
438 *
439          IF( XMAX.GT.BIGNUM ) THEN
440 *
441 *           Scale X so that its components are less than or equal to
442 *           BIGNUM in absolute value.
443 *
444             SCALE = BIGNUM / XMAX
445             CALL DSCAL( N, SCALE, X, 1 )
446             XMAX = BIGNUM
447          END IF
448 *
449          IF( NOTRAN ) THEN
450 *
451 *           Solve A * x = b
452 *
453             DO 110 J = JFIRST, JLAST, JINC
454 *
455 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
456 *
457                XJ = ABS( X( J ) )
458                IF( NOUNIT ) THEN
459                   TJJS = AB( MAIND, J )*TSCAL
460                ELSE
461                   TJJS = TSCAL
462                   IF( TSCAL.EQ.ONE )
463      $               GO TO 100
464                END IF
465                TJJ = ABS( TJJS )
466                IF( TJJ.GT.SMLNUM ) THEN
467 *
468 *                    abs(A(j,j)) > SMLNUM:
469 *
470                   IF( TJJ.LT.ONE ) THEN
471                      IF( XJ.GT.TJJ*BIGNUM ) THEN
472 *
473 *                          Scale x by 1/b(j).
474 *
475                         REC = ONE / XJ
476                         CALL DSCAL( N, REC, X, 1 )
477                         SCALE = SCALE*REC
478                         XMAX = XMAX*REC
479                      END IF
480                   END IF
481                   X( J ) = X( J ) / TJJS
482                   XJ = ABS( X( J ) )
483                ELSE IF( TJJ.GT.ZERO ) THEN
484 *
485 *                    0 < abs(A(j,j)) <= SMLNUM:
486 *
487                   IF( XJ.GT.TJJ*BIGNUM ) THEN
488 *
489 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
490 *                       to avoid overflow when dividing by A(j,j).
491 *
492                      REC = ( TJJ*BIGNUM ) / XJ
493                      IF( CNORM( J ).GT.ONE ) THEN
494 *
495 *                          Scale by 1/CNORM(j) to avoid overflow when
496 *                          multiplying x(j) times column j.
497 *
498                         REC = REC / CNORM( J )
499                      END IF
500                      CALL DSCAL( N, REC, X, 1 )
501                      SCALE = SCALE*REC
502                      XMAX = XMAX*REC
503                   END IF
504                   X( J ) = X( J ) / TJJS
505                   XJ = ABS( X( J ) )
506                ELSE
507 *
508 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
509 *                    scale = 0, and compute a solution to A*x = 0.
510 *
511                   DO 90 I = 1, N
512                      X( I ) = ZERO
513    90             CONTINUE
514                   X( J ) = ONE
515                   XJ = ONE
516                   SCALE = ZERO
517                   XMAX = ZERO
518                END IF
519   100          CONTINUE
520 *
521 *              Scale x if necessary to avoid overflow when adding a
522 *              multiple of column j of A.
523 *
524                IF( XJ.GT.ONE ) THEN
525                   REC = ONE / XJ
526                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
527 *
528 *                    Scale x by 1/(2*abs(x(j))).
529 *
530                      REC = REC*HALF
531                      CALL DSCAL( N, REC, X, 1 )
532                      SCALE = SCALE*REC
533                   END IF
534                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
535 *
536 *                 Scale x by 1/2.
537 *
538                   CALL DSCAL( N, HALF, X, 1 )
539                   SCALE = SCALE*HALF
540                END IF
541 *
542                IF( UPPER ) THEN
543                   IF( J.GT.1 ) THEN
544 *
545 *                    Compute the update
546 *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
547 *                                             x(j)* A(max(1,j-kd):j-1,j)
548 *
549                      JLEN = MIN( KD, J-1 )
550                      CALL DAXPY( JLEN, -X( J )*TSCAL,
551      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
552                      I = IDAMAX( J-1, X, 1 )
553                      XMAX = ABS( X( I ) )
554                   END IF
555                ELSE IF( J.LT.N ) THEN
556 *
557 *                 Compute the update
558 *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
559 *                                          x(j) * A(j+1:min(j+kd,n),j)
560 *
561                   JLEN = MIN( KD, N-J )
562                   IF( JLEN.GT.0 )
563      $               CALL DAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
564      $                           X( J+1 ), 1 )
565                   I = J + IDAMAX( N-J, X( J+1 ), 1 )
566                   XMAX = ABS( X( I ) )
567                END IF
568   110       CONTINUE
569 *
570          ELSE
571 *
572 *           Solve A**T * x = b
573 *
574             DO 160 J = JFIRST, JLAST, JINC
575 *
576 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
577 *                                    k<>j
578 *
579                XJ = ABS( X( J ) )
580                USCAL = TSCAL
581                REC = ONE / MAX( XMAX, ONE )
582                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
583 *
584 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
585 *
586                   REC = REC*HALF
587                   IF( NOUNIT ) THEN
588                      TJJS = AB( MAIND, J )*TSCAL
589                   ELSE
590                      TJJS = TSCAL
591                   END IF
592                   TJJ = ABS( TJJS )
593                   IF( TJJ.GT.ONE ) THEN
594 *
595 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
596 *
597                      REC = MIN( ONE, REC*TJJ )
598                      USCAL = USCAL / TJJS
599                   END IF
600                   IFREC.LT.ONE ) THEN
601                      CALL DSCAL( N, REC, X, 1 )
602                      SCALE = SCALE*REC
603                      XMAX = XMAX*REC
604                   END IF
605                END IF
606 *
607                SUMJ = ZERO
608                IF( USCAL.EQ.ONE ) THEN
609 *
610 *                 If the scaling needed for A in the dot product is 1,
611 *                 call DDOT to perform the dot product.
612 *
613                   IF( UPPER ) THEN
614                      JLEN = MIN( KD, J-1 )
615                      SUMJ = DDOT( JLEN, AB( KD+1-JLEN, J ), 1,
616      $                      X( J-JLEN ), 1 )
617                   ELSE
618                      JLEN = MIN( KD, N-J )
619                      IF( JLEN.GT.0 )
620      $                  SUMJ = DDOT( JLEN, AB( 2, J ), 1, X( J+1 ), 1 )
621                   END IF
622                ELSE
623 *
624 *                 Otherwise, use in-line code for the dot product.
625 *
626                   IF( UPPER ) THEN
627                      JLEN = MIN( KD, J-1 )
628                      DO 120 I = 1, JLEN
629                         SUMJ = SUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
630      $                         X( J-JLEN-1+I )
631   120                CONTINUE
632                   ELSE
633                      JLEN = MIN( KD, N-J )
634                      DO 130 I = 1, JLEN
635                         SUMJ = SUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
636   130                CONTINUE
637                   END IF
638                END IF
639 *
640                IF( USCAL.EQ.TSCAL ) THEN
641 *
642 *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
643 *                 was not used to scale the dotproduct.
644 *
645                   X( J ) = X( J ) - SUMJ
646                   XJ = ABS( X( J ) )
647                   IF( NOUNIT ) THEN
648 *
649 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
650 *
651                      TJJS = AB( MAIND, J )*TSCAL
652                   ELSE
653                      TJJS = TSCAL
654                      IF( TSCAL.EQ.ONE )
655      $                  GO TO 150
656                   END IF
657                   TJJ = ABS( TJJS )
658                   IF( TJJ.GT.SMLNUM ) THEN
659 *
660 *                       abs(A(j,j)) > SMLNUM:
661 *
662                      IF( TJJ.LT.ONE ) THEN
663                         IF( XJ.GT.TJJ*BIGNUM ) THEN
664 *
665 *                             Scale X by 1/abs(x(j)).
666 *
667                            REC = ONE / XJ
668                            CALL DSCAL( N, REC, X, 1 )
669                            SCALE = SCALE*REC
670                            XMAX = XMAX*REC
671                         END IF
672                      END IF
673                      X( J ) = X( J ) / TJJS
674                   ELSE IF( TJJ.GT.ZERO ) THEN
675 *
676 *                       0 < abs(A(j,j)) <= SMLNUM:
677 *
678                      IF( XJ.GT.TJJ*BIGNUM ) THEN
679 *
680 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
681 *
682                         REC = ( TJJ*BIGNUM ) / XJ
683                         CALL DSCAL( N, REC, X, 1 )
684                         SCALE = SCALE*REC
685                         XMAX = XMAX*REC
686                      END IF
687                      X( J ) = X( J ) / TJJS
688                   ELSE
689 *
690 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
691 *                       scale = 0, and compute a solution to A**T*x = 0.
692 *
693                      DO 140 I = 1, N
694                         X( I ) = ZERO
695   140                CONTINUE
696                      X( J ) = ONE
697                      SCALE = ZERO
698                      XMAX = ZERO
699                   END IF
700   150             CONTINUE
701                ELSE
702 *
703 *                 Compute x(j) := x(j) / A(j,j) - sumj if the dot
704 *                 product has already been divided by 1/A(j,j).
705 *
706                   X( J ) = X( J ) / TJJS - SUMJ
707                END IF
708                XMAX = MAX( XMAX, ABS( X( J ) ) )
709   160       CONTINUE
710          END IF
711          SCALE = SCALE / TSCAL
712       END IF
713 *
714 *     Scale the column norms by 1/TSCAL for return.
715 *
716       IF( TSCAL.NE.ONE ) THEN
717          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
718       END IF
719 *
720       RETURN
721 *
722 *     End of DLATBS
723 *
724       END