1       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  2      $                   CNORM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 11       INTEGER            INFO, N
 12       DOUBLE PRECISION   SCALE
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DLATPS solves one of the triangular systems
 22 *
 23 *     A *x = s*b  or  A**T*x = s*b
 24 *
 25 *  with scaling to prevent overflow, where A is an upper or lower
 26 *  triangular matrix stored in packed form.  Here A**T denotes the
 27 *  transpose of A, x and b are n-element vectors, and s is a scaling
 28 *  factor, usually less than or equal to 1, chosen so that the
 29 *  components of x will be less than the overflow threshold.  If the
 30 *  unscaled problem will not cause overflow, the Level 2 BLAS routine
 31 *  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
 32 *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the matrix A is upper or lower triangular.
 39 *          = 'U':  Upper triangular
 40 *          = 'L':  Lower triangular
 41 *
 42 *  TRANS   (input) CHARACTER*1
 43 *          Specifies the operation applied to A.
 44 *          = 'N':  Solve A * x = s*b  (No transpose)
 45 *          = 'T':  Solve A**T* x = s*b  (Transpose)
 46 *          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
 47 *
 48 *  DIAG    (input) CHARACTER*1
 49 *          Specifies whether or not the matrix A is unit triangular.
 50 *          = 'N':  Non-unit triangular
 51 *          = 'U':  Unit triangular
 52 *
 53 *  NORMIN  (input) CHARACTER*1
 54 *          Specifies whether CNORM has been set or not.
 55 *          = 'Y':  CNORM contains the column norms on entry
 56 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
 57 *                  be computed and stored in CNORM.
 58 *
 59 *  N       (input) INTEGER
 60 *          The order of the matrix A.  N >= 0.
 61 *
 62 *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 63 *          The upper or lower triangular matrix A, packed columnwise in
 64 *          a linear array.  The j-th column of A is stored in the array
 65 *          AP as follows:
 66 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 67 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 68 *
 69 *  X       (input/output) DOUBLE PRECISION array, dimension (N)
 70 *          On entry, the right hand side b of the triangular system.
 71 *          On exit, X is overwritten by the solution vector x.
 72 *
 73 *  SCALE   (output) DOUBLE PRECISION
 74 *          The scaling factor s for the triangular system
 75 *             A * x = s*b  or  A**T* x = s*b.
 76 *          If SCALE = 0, the matrix A is singular or badly scaled, and
 77 *          the vector x is an exact or approximate solution to A*x = 0.
 78 *
 79 *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
 80 *
 81 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 82 *          contains the norm of the off-diagonal part of the j-th column
 83 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 84 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 85 *          must be greater than or equal to the 1-norm.
 86 *
 87 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 88 *          returns the 1-norm of the offdiagonal part of the j-th column
 89 *          of A.
 90 *
 91 *  INFO    (output) INTEGER
 92 *          = 0:  successful exit
 93 *          < 0:  if INFO = -k, the k-th argument had an illegal value
 94 *
 95 *  Further Details
 96 *  ======= =======
 97 *
 98 *  A rough bound on x is computed; if that is less than overflow, DTPSV
 99 *  is called, otherwise, specific code is used which checks for possible
100 *  overflow or divide-by-zero at every operation.
101 *
102 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
103 *  if A is lower triangular is
104 *
105 *       x[1:n] := b[1:n]
106 *       for j = 1, ..., n
107 *            x(j) := x(j) / A(j,j)
108 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
109 *       end
110 *
111 *  Define bounds on the components of x after j iterations of the loop:
112 *     M(j) = bound on x[1:j]
113 *     G(j) = bound on x[j+1:n]
114 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
115 *
116 *  Then for iteration j+1 we have
117 *     M(j+1) <= G(j) / | A(j+1,j+1) |
118 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
119 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
120 *
121 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
122 *  column j+1 of A, not counting the diagonal.  Hence
123 *
124 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
125 *                  1<=i<=j
126 *  and
127 *
128 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
129 *                                   1<=i< j
130 *
131 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
132 *  reciprocal of the largest M(j), j=1,..,n, is larger than
133 *  max(underflow, 1/overflow).
134 *
135 *  The bound on x(j) is also used to determine when a step in the
136 *  columnwise method can be performed without fear of overflow.  If
137 *  the computed bound is greater than a large constant, x is scaled to
138 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
139 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
140 *
141 *  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
142 *  algorithm for A upper triangular is
143 *
144 *       for j = 1, ..., n
145 *            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
146 *       end
147 *
148 *  We simultaneously compute two bounds
149 *       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
150 *       M(j) = bound on x(i), 1<=i<=j
151 *
152 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
153 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
154 *  Then the bound on x(j) is
155 *
156 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
157 *
158 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
159 *                      1<=i<=j
160 *
161 *  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
162 *  than max(underflow, 1/overflow).
163 *
164 *  =====================================================================
165 *
166 *     .. Parameters ..
167       DOUBLE PRECISION   ZERO, HALF, ONE
168       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
169 *     ..
170 *     .. Local Scalars ..
171       LOGICAL            NOTRAN, NOUNIT, UPPER
172       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
173       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
174      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
175 *     ..
176 *     .. External Functions ..
177       LOGICAL            LSAME
178       INTEGER            IDAMAX
179       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
180       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
181 *     ..
182 *     .. External Subroutines ..
183       EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
184 *     ..
185 *     .. Intrinsic Functions ..
186       INTRINSIC          ABSMAXMIN
187 *     ..
188 *     .. Executable Statements ..
189 *
190       INFO = 0
191       UPPER = LSAME( UPLO, 'U' )
192       NOTRAN = LSAME( TRANS, 'N' )
193       NOUNIT = LSAME( DIAG, 'N' )
194 *
195 *     Test the input parameters.
196 *
197       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
198          INFO = -1
199       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
200      $         LSAME( TRANS, 'C' ) ) THEN
201          INFO = -2
202       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
203          INFO = -3
204       ELSE IF.NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
205      $         LSAME( NORMIN, 'N' ) ) THEN
206          INFO = -4
207       ELSE IF( N.LT.0 ) THEN
208          INFO = -5
209       END IF
210       IF( INFO.NE.0 ) THEN
211          CALL XERBLA( 'DLATPS'-INFO )
212          RETURN
213       END IF
214 *
215 *     Quick return if possible
216 *
217       IF( N.EQ.0 )
218      $   RETURN
219 *
220 *     Determine machine dependent parameters to control overflow.
221 *
222       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
223       BIGNUM = ONE / SMLNUM
224       SCALE = ONE
225 *
226       IF( LSAME( NORMIN, 'N' ) ) THEN
227 *
228 *        Compute the 1-norm of each column, not including the diagonal.
229 *
230          IF( UPPER ) THEN
231 *
232 *           A is upper triangular.
233 *
234             IP = 1
235             DO 10 J = 1, N
236                CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
237                IP = IP + J
238    10       CONTINUE
239          ELSE
240 *
241 *           A is lower triangular.
242 *
243             IP = 1
244             DO 20 J = 1, N - 1
245                CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
246                IP = IP + N - J + 1
247    20       CONTINUE
248             CNORM( N ) = ZERO
249          END IF
250       END IF
251 *
252 *     Scale the column norms by TSCAL if the maximum element in CNORM is
253 *     greater than BIGNUM.
254 *
255       IMAX = IDAMAX( N, CNORM, 1 )
256       TMAX = CNORM( IMAX )
257       IF( TMAX.LE.BIGNUM ) THEN
258          TSCAL = ONE
259       ELSE
260          TSCAL = ONE / ( SMLNUM*TMAX )
261          CALL DSCAL( N, TSCAL, CNORM, 1 )
262       END IF
263 *
264 *     Compute a bound on the computed solution vector to see if the
265 *     Level 2 BLAS routine DTPSV can be used.
266 *
267       J = IDAMAX( N, X, 1 )
268       XMAX = ABS( X( J ) )
269       XBND = XMAX
270       IF( NOTRAN ) THEN
271 *
272 *        Compute the growth in A * x = b.
273 *
274          IF( UPPER ) THEN
275             JFIRST = N
276             JLAST = 1
277             JINC = -1
278          ELSE
279             JFIRST = 1
280             JLAST = N
281             JINC = 1
282          END IF
283 *
284          IF( TSCAL.NE.ONE ) THEN
285             GROW = ZERO
286             GO TO 50
287          END IF
288 *
289          IF( NOUNIT ) THEN
290 *
291 *           A is non-unit triangular.
292 *
293 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
294 *           Initially, G(0) = max{x(i), i=1,...,n}.
295 *
296             GROW = ONE / MAX( XBND, SMLNUM )
297             XBND = GROW
298             IP = JFIRST*( JFIRST+1 ) / 2
299             JLEN = N
300             DO 30 J = JFIRST, JLAST, JINC
301 *
302 *              Exit the loop if the growth factor is too small.
303 *
304                IF( GROW.LE.SMLNUM )
305      $            GO TO 50
306 *
307 *              M(j) = G(j-1) / abs(A(j,j))
308 *
309                TJJ = ABS( AP( IP ) )
310                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
311                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
312 *
313 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
314 *
315                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
316                ELSE
317 *
318 *                 G(j) could overflow, set GROW to 0.
319 *
320                   GROW = ZERO
321                END IF
322                IP = IP + JINC*JLEN
323                JLEN = JLEN - 1
324    30       CONTINUE
325             GROW = XBND
326          ELSE
327 *
328 *           A is unit triangular.
329 *
330 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
331 *
332             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
333             DO 40 J = JFIRST, JLAST, JINC
334 *
335 *              Exit the loop if the growth factor is too small.
336 *
337                IF( GROW.LE.SMLNUM )
338      $            GO TO 50
339 *
340 *              G(j) = G(j-1)*( 1 + CNORM(j) )
341 *
342                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
343    40       CONTINUE
344          END IF
345    50    CONTINUE
346 *
347       ELSE
348 *
349 *        Compute the growth in A**T * x = b.
350 *
351          IF( UPPER ) THEN
352             JFIRST = 1
353             JLAST = N
354             JINC = 1
355          ELSE
356             JFIRST = N
357             JLAST = 1
358             JINC = -1
359          END IF
360 *
361          IF( TSCAL.NE.ONE ) THEN
362             GROW = ZERO
363             GO TO 80
364          END IF
365 *
366          IF( NOUNIT ) THEN
367 *
368 *           A is non-unit triangular.
369 *
370 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
371 *           Initially, M(0) = max{x(i), i=1,...,n}.
372 *
373             GROW = ONE / MAX( XBND, SMLNUM )
374             XBND = GROW
375             IP = JFIRST*( JFIRST+1 ) / 2
376             JLEN = 1
377             DO 60 J = JFIRST, JLAST, JINC
378 *
379 *              Exit the loop if the growth factor is too small.
380 *
381                IF( GROW.LE.SMLNUM )
382      $            GO TO 80
383 *
384 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
385 *
386                XJ = ONE + CNORM( J )
387                GROW = MIN( GROW, XBND / XJ )
388 *
389 *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
390 *
391                TJJ = ABS( AP( IP ) )
392                IF( XJ.GT.TJJ )
393      $            XBND = XBND*( TJJ / XJ )
394                JLEN = JLEN + 1
395                IP = IP + JINC*JLEN
396    60       CONTINUE
397             GROW = MIN( GROW, XBND )
398          ELSE
399 *
400 *           A is unit triangular.
401 *
402 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
403 *
404             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
405             DO 70 J = JFIRST, JLAST, JINC
406 *
407 *              Exit the loop if the growth factor is too small.
408 *
409                IF( GROW.LE.SMLNUM )
410      $            GO TO 80
411 *
412 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
413 *
414                XJ = ONE + CNORM( J )
415                GROW = GROW / XJ
416    70       CONTINUE
417          END IF
418    80    CONTINUE
419       END IF
420 *
421       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
422 *
423 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
424 *        elements of X is not too small.
425 *
426          CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
427       ELSE
428 *
429 *        Use a Level 1 BLAS solve, scaling intermediate results.
430 *
431          IF( XMAX.GT.BIGNUM ) THEN
432 *
433 *           Scale X so that its components are less than or equal to
434 *           BIGNUM in absolute value.
435 *
436             SCALE = BIGNUM / XMAX
437             CALL DSCAL( N, SCALE, X, 1 )
438             XMAX = BIGNUM
439          END IF
440 *
441          IF( NOTRAN ) THEN
442 *
443 *           Solve A * x = b
444 *
445             IP = JFIRST*( JFIRST+1 ) / 2
446             DO 110 J = JFIRST, JLAST, JINC
447 *
448 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
449 *
450                XJ = ABS( X( J ) )
451                IF( NOUNIT ) THEN
452                   TJJS = AP( IP )*TSCAL
453                ELSE
454                   TJJS = TSCAL
455                   IF( TSCAL.EQ.ONE )
456      $               GO TO 100
457                END IF
458                TJJ = ABS( TJJS )
459                IF( TJJ.GT.SMLNUM ) THEN
460 *
461 *                    abs(A(j,j)) > SMLNUM:
462 *
463                   IF( TJJ.LT.ONE ) THEN
464                      IF( XJ.GT.TJJ*BIGNUM ) THEN
465 *
466 *                          Scale x by 1/b(j).
467 *
468                         REC = ONE / XJ
469                         CALL DSCAL( N, REC, X, 1 )
470                         SCALE = SCALE*REC
471                         XMAX = XMAX*REC
472                      END IF
473                   END IF
474                   X( J ) = X( J ) / TJJS
475                   XJ = ABS( X( J ) )
476                ELSE IF( TJJ.GT.ZERO ) THEN
477 *
478 *                    0 < abs(A(j,j)) <= SMLNUM:
479 *
480                   IF( XJ.GT.TJJ*BIGNUM ) THEN
481 *
482 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
483 *                       to avoid overflow when dividing by A(j,j).
484 *
485                      REC = ( TJJ*BIGNUM ) / XJ
486                      IF( CNORM( J ).GT.ONE ) THEN
487 *
488 *                          Scale by 1/CNORM(j) to avoid overflow when
489 *                          multiplying x(j) times column j.
490 *
491                         REC = REC / CNORM( J )
492                      END IF
493                      CALL DSCAL( N, REC, X, 1 )
494                      SCALE = SCALE*REC
495                      XMAX = XMAX*REC
496                   END IF
497                   X( J ) = X( J ) / TJJS
498                   XJ = ABS( X( J ) )
499                ELSE
500 *
501 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
502 *                    scale = 0, and compute a solution to A*x = 0.
503 *
504                   DO 90 I = 1, N
505                      X( I ) = ZERO
506    90             CONTINUE
507                   X( J ) = ONE
508                   XJ = ONE
509                   SCALE = ZERO
510                   XMAX = ZERO
511                END IF
512   100          CONTINUE
513 *
514 *              Scale x if necessary to avoid overflow when adding a
515 *              multiple of column j of A.
516 *
517                IF( XJ.GT.ONE ) THEN
518                   REC = ONE / XJ
519                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
520 *
521 *                    Scale x by 1/(2*abs(x(j))).
522 *
523                      REC = REC*HALF
524                      CALL DSCAL( N, REC, X, 1 )
525                      SCALE = SCALE*REC
526                   END IF
527                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
528 *
529 *                 Scale x by 1/2.
530 *
531                   CALL DSCAL( N, HALF, X, 1 )
532                   SCALE = SCALE*HALF
533                END IF
534 *
535                IF( UPPER ) THEN
536                   IF( J.GT.1 ) THEN
537 *
538 *                    Compute the update
539 *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
540 *
541                      CALL DAXPY( J-1-X( J )*TSCAL, AP( IP-J+1 ), 1, X,
542      $                           1 )
543                      I = IDAMAX( J-1, X, 1 )
544                      XMAX = ABS( X( I ) )
545                   END IF
546                   IP = IP - J
547                ELSE
548                   IF( J.LT.N ) THEN
549 *
550 *                    Compute the update
551 *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
552 *
553                      CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
554      $                           X( J+1 ), 1 )
555                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
556                      XMAX = ABS( X( I ) )
557                   END IF
558                   IP = IP + N - J + 1
559                END IF
560   110       CONTINUE
561 *
562          ELSE
563 *
564 *           Solve A**T * x = b
565 *
566             IP = JFIRST*( JFIRST+1 ) / 2
567             JLEN = 1
568             DO 160 J = JFIRST, JLAST, JINC
569 *
570 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
571 *                                    k<>j
572 *
573                XJ = ABS( X( J ) )
574                USCAL = TSCAL
575                REC = ONE / MAX( XMAX, ONE )
576                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
577 *
578 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
579 *
580                   REC = REC*HALF
581                   IF( NOUNIT ) THEN
582                      TJJS = AP( IP )*TSCAL
583                   ELSE
584                      TJJS = TSCAL
585                   END IF
586                   TJJ = ABS( TJJS )
587                   IF( TJJ.GT.ONE ) THEN
588 *
589 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
590 *
591                      REC = MIN( ONE, REC*TJJ )
592                      USCAL = USCAL / TJJS
593                   END IF
594                   IFREC.LT.ONE ) THEN
595                      CALL DSCAL( N, REC, X, 1 )
596                      SCALE = SCALE*REC
597                      XMAX = XMAX*REC
598                   END IF
599                END IF
600 *
601                SUMJ = ZERO
602                IF( USCAL.EQ.ONE ) THEN
603 *
604 *                 If the scaling needed for A in the dot product is 1,
605 *                 call DDOT to perform the dot product.
606 *
607                   IF( UPPER ) THEN
608                      SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
609                   ELSE IF( J.LT.N ) THEN
610                      SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
611                   END IF
612                ELSE
613 *
614 *                 Otherwise, use in-line code for the dot product.
615 *
616                   IF( UPPER ) THEN
617                      DO 120 I = 1, J - 1
618                         SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
619   120                CONTINUE
620                   ELSE IF( J.LT.N ) THEN
621                      DO 130 I = 1, N - J
622                         SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
623   130                CONTINUE
624                   END IF
625                END IF
626 *
627                IF( USCAL.EQ.TSCAL ) THEN
628 *
629 *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
630 *                 was not used to scale the dotproduct.
631 *
632                   X( J ) = X( J ) - SUMJ
633                   XJ = ABS( X( J ) )
634                   IF( NOUNIT ) THEN
635 *
636 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
637 *
638                      TJJS = AP( IP )*TSCAL
639                   ELSE
640                      TJJS = TSCAL
641                      IF( TSCAL.EQ.ONE )
642      $                  GO TO 150
643                   END IF
644                   TJJ = ABS( TJJS )
645                   IF( TJJ.GT.SMLNUM ) THEN
646 *
647 *                       abs(A(j,j)) > SMLNUM:
648 *
649                      IF( TJJ.LT.ONE ) THEN
650                         IF( XJ.GT.TJJ*BIGNUM ) THEN
651 *
652 *                             Scale X by 1/abs(x(j)).
653 *
654                            REC = ONE / XJ
655                            CALL DSCAL( N, REC, X, 1 )
656                            SCALE = SCALE*REC
657                            XMAX = XMAX*REC
658                         END IF
659                      END IF
660                      X( J ) = X( J ) / TJJS
661                   ELSE IF( TJJ.GT.ZERO ) THEN
662 *
663 *                       0 < abs(A(j,j)) <= SMLNUM:
664 *
665                      IF( XJ.GT.TJJ*BIGNUM ) THEN
666 *
667 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
668 *
669                         REC = ( TJJ*BIGNUM ) / XJ
670                         CALL DSCAL( N, REC, X, 1 )
671                         SCALE = SCALE*REC
672                         XMAX = XMAX*REC
673                      END IF
674                      X( J ) = X( J ) / TJJS
675                   ELSE
676 *
677 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
678 *                       scale = 0, and compute a solution to A**T*x = 0.
679 *
680                      DO 140 I = 1, N
681                         X( I ) = ZERO
682   140                CONTINUE
683                      X( J ) = ONE
684                      SCALE = ZERO
685                      XMAX = ZERO
686                   END IF
687   150             CONTINUE
688                ELSE
689 *
690 *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
691 *                 product has already been divided by 1/A(j,j).
692 *
693                   X( J ) = X( J ) / TJJS - SUMJ
694                END IF
695                XMAX = MAX( XMAX, ABS( X( J ) ) )
696                JLEN = JLEN + 1
697                IP = IP + JINC*JLEN
698   160       CONTINUE
699          END IF
700          SCALE = SCALE / TSCAL
701       END IF
702 *
703 *     Scale the column norms by 1/TSCAL for return.
704 *
705       IF( TSCAL.NE.ONE ) THEN
706          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
707       END IF
708 *
709       RETURN
710 *
711 *     End of DLATPS
712 *
713       END