1       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            L, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
 19 *  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
 20 *  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
 21 *  matrix and, R and A1 are M-by-M upper triangular matrices.
 22 *
 23 *  Arguments
 24 *  =========
 25 *
 26 *  M       (input) INTEGER
 27 *          The number of rows of the matrix A.  M >= 0.
 28 *
 29 *  N       (input) INTEGER
 30 *          The number of columns of the matrix A.  N >= 0.
 31 *
 32 *  L       (input) INTEGER
 33 *          The number of columns of the matrix A containing the
 34 *          meaningful part of the Householder vectors. N-M >= L >= 0.
 35 *
 36 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 37 *          On entry, the leading M-by-N upper trapezoidal part of the
 38 *          array A must contain the matrix to be factorized.
 39 *          On exit, the leading M-by-M upper triangular part of A
 40 *          contains the upper triangular matrix R, and elements N-L+1 to
 41 *          N of the first M rows of A, with the array TAU, represent the
 42 *          orthogonal matrix Z as a product of M elementary reflectors.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,M).
 46 *
 47 *  TAU     (output) DOUBLE PRECISION array, dimension (M)
 48 *          The scalar factors of the elementary reflectors.
 49 *
 50 *  WORK    (workspace) DOUBLE PRECISION array, dimension (M)
 51 *
 52 *  Further Details
 53 *  ===============
 54 *
 55 *  Based on contributions by
 56 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 57 *
 58 *  The factorization is obtained by Householder's method.  The kth
 59 *  transformation matrix, Z( k ), which is used to introduce zeros into
 60 *  the ( m - k + 1 )th row of A, is given in the form
 61 *
 62 *     Z( k ) = ( I     0   ),
 63 *              ( 0  T( k ) )
 64 *
 65 *  where
 66 *
 67 *     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
 68 *                                                 (   0    )
 69 *                                                 ( z( k ) )
 70 *
 71 *  tau is a scalar and z( k ) is an l element vector. tau and z( k )
 72 *  are chosen to annihilate the elements of the kth row of A2.
 73 *
 74 *  The scalar tau is returned in the kth element of TAU and the vector
 75 *  u( k ) in the kth row of A2, such that the elements of z( k ) are
 76 *  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
 77 *  the upper triangular part of A1.
 78 *
 79 *  Z is given by
 80 *
 81 *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
 82 *
 83 *  =====================================================================
 84 *
 85 *     .. Parameters ..
 86       DOUBLE PRECISION   ZERO
 87       PARAMETER          ( ZERO = 0.0D+0 )
 88 *     ..
 89 *     .. Local Scalars ..
 90       INTEGER            I
 91 *     ..
 92 *     .. External Subroutines ..
 93       EXTERNAL           DLARFG, DLARZ
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97 *     Test the input arguments
 98 *
 99 *     Quick return if possible
100 *
101       IF( M.EQ.0 ) THEN
102          RETURN
103       ELSE IF( M.EQ.N ) THEN
104          DO 10 I = 1, N
105             TAU( I ) = ZERO
106    10    CONTINUE
107          RETURN
108       END IF
109 *
110       DO 20 I = M, 1-1
111 *
112 *        Generate elementary reflector H(i) to annihilate
113 *        [ A(i,i) A(i,n-l+1:n) ]
114 *
115          CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
116 *
117 *        Apply H(i) to A(1:i-1,i:n) from the right
118 *
119          CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
120      $               TAU( I ), A( 1, I ), LDA, WORK )
121 *
122    20 CONTINUE
123 *
124       RETURN
125 *
126 *     End of DLATRZ
127 *
128       END