1       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  2      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  3      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  4       IMPLICIT NONE
  5 *
  6 *  -- LAPACK routine (version 3.3.0) --
  7 *
  8 *  -- Contributed by Brian Sutton of the Randolph-Macon College --
  9 *  -- November 2010
 10 *
 11 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 12 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
 13 *
 14 *     .. Scalar Arguments ..
 15       CHARACTER          SIGNS, TRANS
 16       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
 17      $                   Q
 18 *     ..
 19 *     .. Array Arguments ..
 20       DOUBLE PRECISION   PHI( * ), THETA( * )
 21       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
 22      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
 23      $                   X21( LDX21, * ), X22( LDX22, * )
 24 *     ..
 25 *
 26 *  Purpose
 27 *  =======
 28 *
 29 *  DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
 30 *  partitioned orthogonal matrix X:
 31 *
 32 *                                  [ B11 | B12 0  0 ]
 33 *      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
 34 *  X = [-----------] = [---------] [----------------] [---------]   .
 35 *      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
 36 *                                  [  0  |  0  0  I ]
 37 *
 38 *  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
 39 *  not the case, then X must be transposed and/or permuted. This can be
 40 *  done in constant time using the TRANS and SIGNS options. See DORCSD
 41 *  for details.)
 42 *
 43 *  The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
 44 *  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
 45 *  represented implicitly by Householder vectors.
 46 *
 47 *  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
 48 *  implicitly by angles THETA, PHI.
 49 *
 50 *  Arguments
 51 *  =========
 52 *
 53 *  TRANS   (input) CHARACTER
 54 *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
 55 *                      order;
 56 *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
 57 *                      major order.
 58 *
 59 *  SIGNS   (input) CHARACTER
 60 *          = 'O':      The lower-left block is made nonpositive (the
 61 *                      "other" convention);
 62 *          otherwise:  The upper-right block is made nonpositive (the
 63 *                      "default" convention).
 64 *
 65 *  M       (input) INTEGER
 66 *          The number of rows and columns in X.
 67 *
 68 *  P       (input) INTEGER
 69 *          The number of rows in X11 and X12. 0 <= P <= M.
 70 *
 71 *  Q       (input) INTEGER
 72 *          The number of columns in X11 and X21. 0 <= Q <=
 73 *          MIN(P,M-P,M-Q).
 74 *
 75 *  X11     (input/output) DOUBLE PRECISION array, dimension (LDX11,Q)
 76 *          On entry, the top-left block of the orthogonal matrix to be
 77 *          reduced. On exit, the form depends on TRANS:
 78 *          If TRANS = 'N', then
 79 *             the columns of tril(X11) specify reflectors for P1,
 80 *             the rows of triu(X11,1) specify reflectors for Q1;
 81 *          else TRANS = 'T', and
 82 *             the rows of triu(X11) specify reflectors for P1,
 83 *             the columns of tril(X11,-1) specify reflectors for Q1.
 84 *
 85 *  LDX11   (input) INTEGER
 86 *          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
 87 *          P; else LDX11 >= Q.
 88 *
 89 *  X12     (input/output) DOUBLE PRECISION array, dimension (LDX12,M-Q)
 90 *          On entry, the top-right block of the orthogonal matrix to
 91 *          be reduced. On exit, the form depends on TRANS:
 92 *          If TRANS = 'N', then
 93 *             the rows of triu(X12) specify the first P reflectors for
 94 *             Q2;
 95 *          else TRANS = 'T', and
 96 *             the columns of tril(X12) specify the first P reflectors
 97 *             for Q2.
 98 *
 99 *  LDX12   (input) INTEGER
100 *          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
101 *          P; else LDX11 >= M-Q.
102 *
103 *  X21     (input/output) DOUBLE PRECISION array, dimension (LDX21,Q)
104 *          On entry, the bottom-left block of the orthogonal matrix to
105 *          be reduced. On exit, the form depends on TRANS:
106 *          If TRANS = 'N', then
107 *             the columns of tril(X21) specify reflectors for P2;
108 *          else TRANS = 'T', and
109 *             the rows of triu(X21) specify reflectors for P2.
110 *
111 *  LDX21   (input) INTEGER
112 *          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
113 *          M-P; else LDX21 >= Q.
114 *
115 *  X22     (input/output) DOUBLE PRECISION array, dimension (LDX22,M-Q)
116 *          On entry, the bottom-right block of the orthogonal matrix to
117 *          be reduced. On exit, the form depends on TRANS:
118 *          If TRANS = 'N', then
119 *             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
120 *             M-P-Q reflectors for Q2,
121 *          else TRANS = 'T', and
122 *             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
123 *             M-P-Q reflectors for P2.
124 *
125 *  LDX22   (input) INTEGER
126 *          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
127 *          M-P; else LDX22 >= M-Q.
128 *
129 *  THETA   (output) DOUBLE PRECISION array, dimension (Q)
130 *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
131 *          be computed from the angles THETA and PHI. See Further
132 *          Details.
133 *
134 *  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
135 *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
136 *          be computed from the angles THETA and PHI. See Further
137 *          Details.
138 *
139 *  TAUP1   (output) DOUBLE PRECISION array, dimension (P)
140 *          The scalar factors of the elementary reflectors that define
141 *          P1.
142 *
143 *  TAUP2   (output) DOUBLE PRECISION array, dimension (M-P)
144 *          The scalar factors of the elementary reflectors that define
145 *          P2.
146 *
147 *  TAUQ1   (output) DOUBLE PRECISION array, dimension (Q)
148 *          The scalar factors of the elementary reflectors that define
149 *          Q1.
150 *
151 *  TAUQ2   (output) DOUBLE PRECISION array, dimension (M-Q)
152 *          The scalar factors of the elementary reflectors that define
153 *          Q2.
154 *
155 *  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
156 *
157 *  LWORK   (input) INTEGER
158 *          The dimension of the array WORK. LWORK >= M-Q.
159 *
160 *          If LWORK = -1, then a workspace query is assumed; the routine
161 *          only calculates the optimal size of the WORK array, returns
162 *          this value as the first entry of the WORK array, and no error
163 *          message related to LWORK is issued by XERBLA.
164 *
165 *  INFO    (output) INTEGER
166 *          = 0:  successful exit.
167 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
168 *
169 *  Further Details
170 *  ===============
171 *
172 *  The bidiagonal blocks B11, B12, B21, and B22 are represented
173 *  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
174 *  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
175 *  lower bidiagonal. Every entry in each bidiagonal band is a product
176 *  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
177 *  [1] or DORCSD for details.
178 *
179 *  P1, P2, Q1, and Q2 are represented as products of elementary
180 *  reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
181 *  using DORGQR and DORGLQ.
182 *
183 *  Reference
184 *  =========
185 *
186 *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
187 *      Algorithms, 50(1):33-65, 2009.
188 *
189 *  ====================================================================
190 *
191 *     .. Parameters ..
192       DOUBLE PRECISION   REALONE
193       PARAMETER          ( REALONE = 1.0D0 )
194       DOUBLE PRECISION   NEGONE, ONE
195       PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0 )
196 *     ..
197 *     .. Local Scalars ..
198       LOGICAL            COLMAJOR, LQUERY
199       INTEGER            I, LWORKMIN, LWORKOPT
200       DOUBLE PRECISION   Z1, Z2, Z3, Z4
201 *     ..
202 *     .. External Subroutines ..
203       EXTERNAL           DAXPY, DLARF, DLARFGP, DSCAL, XERBLA
204 *     ..
205 *     .. External Functions ..
206       DOUBLE PRECISION   DNRM2
207       LOGICAL            LSAME
208       EXTERNAL           DNRM2, LSAME
209 *     ..
210 *     .. Intrinsic Functions
211       INTRINSIC          ATAN2COSMAXMINSIN
212 *     ..
213 *     .. Executable Statements ..
214 *
215 *     Test input arguments
216 *
217       INFO = 0
218       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
219       IF.NOT. LSAME( SIGNS, 'O' ) ) THEN
220          Z1 = REALONE
221          Z2 = REALONE
222          Z3 = REALONE
223          Z4 = REALONE
224       ELSE
225          Z1 = REALONE
226          Z2 = -REALONE
227          Z3 = REALONE
228          Z4 = -REALONE
229       END IF
230       LQUERY = LWORK .EQ. -1
231 *
232       IF( M .LT. 0 ) THEN
233          INFO = -3
234       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
235          INFO = -4
236       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-.OR.
237      $         Q .GT. M-Q ) THEN
238          INFO = -5
239       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX1, P ) ) THEN
240          INFO = -7
241       ELSE IF.NOT.COLMAJOR .AND. LDX11 .LT. MAX1, Q ) ) THEN
242          INFO = -7
243       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX1, P ) ) THEN
244          INFO = -9
245       ELSE IF.NOT.COLMAJOR .AND. LDX12 .LT. MAX1, M-Q ) ) THEN
246          INFO = -9
247       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX1, M-P ) ) THEN
248          INFO = -11
249       ELSE IF.NOT.COLMAJOR .AND. LDX21 .LT. MAX1, Q ) ) THEN
250          INFO = -11
251       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX1, M-P ) ) THEN
252          INFO = -13
253       ELSE IF.NOT.COLMAJOR .AND. LDX22 .LT. MAX1, M-Q ) ) THEN
254          INFO = -13
255       END IF
256 *
257 *     Compute workspace
258 *
259       IF( INFO .EQ. 0 ) THEN
260          LWORKOPT = M - Q
261          LWORKMIN = M - Q
262          WORK(1= LWORKOPT
263          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
264             INFO = -21
265          END IF
266       END IF
267       IF( INFO .NE. 0 ) THEN
268          CALL XERBLA( 'xORBDB'-INFO )
269          RETURN
270       ELSE IF( LQUERY ) THEN
271          RETURN
272       END IF
273 *
274 *     Handle column-major and row-major separately
275 *
276       IF( COLMAJOR ) THEN
277 *
278 *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
279 *
280          DO I = 1, Q
281 *
282             IF( I .EQ. 1 ) THEN
283                CALL DSCAL( P-I+1, Z1, X11(I,I), 1 )
284             ELSE
285                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
286                CALL DAXPY( P-I+1-Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
287      $                     1, X11(I,I), 1 )
288             END IF
289             IF( I .EQ. 1 ) THEN
290                CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 )
291             ELSE
292                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
293                CALL DAXPY( M-P-I+1-Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
294      $                     1, X21(I,I), 1 )
295             END IF
296 *
297             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ),
298      $                 DNRM2( P-I+1, X11(I,I), 1 ) )
299 *
300             CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
301             X11(I,I) = ONE
302             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
303             X21(I,I) = ONE
304 *
305             CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
306      $                  X11(I,I+1), LDX11, WORK )
307             CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
308      $                  X12(I,I), LDX12, WORK )
309             CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
310      $                  X21(I,I+1), LDX21, WORK )
311             CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
312      $                  X22(I,I), LDX22, WORK )
313 *
314             IF( I .LT. Q ) THEN
315                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
316      $                     LDX11 )
317                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
318      $                     X11(I,I+1), LDX11 )
319             END IF
320             CALL DSCAL( M-Q-I+1-Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
321             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
322      $                  X12(I,I), LDX12 )
323 *
324             IF( I .LT. Q )
325      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ),
326      $                  DNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
327 *
328             IF( I .LT. Q ) THEN
329                CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
330      $                       TAUQ1(I) )
331                X11(I,I+1= ONE
332             END IF
333             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
334      $                    TAUQ2(I) )
335             X12(I,I) = ONE
336 *
337             IF( I .LT. Q ) THEN
338                CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
339      $                     X11(I+1,I+1), LDX11, WORK )
340                CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
341      $                     X21(I+1,I+1), LDX21, WORK )
342             END IF
343             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
344      $                  X12(I+1,I), LDX12, WORK )
345             CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
346      $                  X22(I+1,I), LDX22, WORK )
347 *
348          END DO
349 *
350 *        Reduce columns Q + 1, ..., P of X12, X22
351 *
352          DO I = Q + 1, P
353 *
354             CALL DSCAL( M-Q-I+1-Z1*Z4, X12(I,I), LDX12 )
355             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
356      $                    TAUQ2(I) )
357             X12(I,I) = ONE
358 *
359             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
360      $                  X12(I+1,I), LDX12, WORK )
361             IF( M-P-.GE. 1 )
362      $         CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
363      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
364 *
365          END DO
366 *
367 *        Reduce columns P + 1, ..., M - Q of X12, X22
368 *
369          DO I = 1, M - P - Q
370 *
371             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
372             CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
373      $                    LDX22, TAUQ2(P+I) )
374             X22(Q+I,P+I) = ONE
375             CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
376      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
377 *
378          END DO
379 *
380       ELSE
381 *
382 *        Reduce columns 1, ..., Q of X11, X12, X21, X22
383 *
384          DO I = 1, Q
385 *
386             IF( I .EQ. 1 ) THEN
387                CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 )
388             ELSE
389                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
390                CALL DAXPY( P-I+1-Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
391      $                     LDX12, X11(I,I), LDX11 )
392             END IF
393             IF( I .EQ. 1 ) THEN
394                CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
395             ELSE
396                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
397                CALL DAXPY( M-P-I+1-Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
398      $                     LDX22, X21(I,I), LDX21 )
399             END IF
400 *
401             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ),
402      $                 DNRM2( P-I+1, X11(I,I), LDX11 ) )
403 *
404             CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
405             X11(I,I) = ONE
406             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
407      $                    TAUP2(I) )
408             X21(I,I) = ONE
409 *
410             CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
411      $                  X11(I+1,I), LDX11, WORK )
412             CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
413      $                  X12(I,I), LDX12, WORK )
414             CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
415      $                  X21(I+1,I), LDX21, WORK )
416             CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
417      $                  TAUP2(I), X22(I,I), LDX22, WORK )
418 *
419             IF( I .LT. Q ) THEN
420                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
421                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
422      $                     X11(I+1,I), 1 )
423             END IF
424             CALL DSCAL( M-Q-I+1-Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
425             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
426      $                  X12(I,I), 1 )
427 *
428             IF( I .LT. Q )
429      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ),
430      $                  DNRM2( M-Q-I+1, X12(I,I), 1 ) )
431 *
432             IF( I .LT. Q ) THEN
433                CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
434                X11(I+1,I) = ONE
435             END IF
436             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
437             X12(I,I) = ONE
438 *
439             IF( I .LT. Q ) THEN
440                CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
441      $                     X11(I+1,I+1), LDX11, WORK )
442                CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
443      $                     X21(I+1,I+1), LDX21, WORK )
444             END IF
445             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
446      $                  X12(I,I+1), LDX12, WORK )
447             CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
448      $                  X22(I,I+1), LDX22, WORK )
449 *
450          END DO
451 *
452 *        Reduce columns Q + 1, ..., P of X12, X22
453 *
454          DO I = Q + 1, P
455 *
456             CALL DSCAL( M-Q-I+1-Z1*Z4, X12(I,I), 1 )
457             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
458             X12(I,I) = ONE
459 *
460             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
461      $                  X12(I,I+1), LDX12, WORK )
462             IF( M-P-.GE. 1 )
463      $         CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
464      $                     X22(I,Q+1), LDX22, WORK )
465 *
466          END DO
467 *
468 *        Reduce columns P + 1, ..., M - Q of X12, X22
469 *
470          DO I = 1, M - P - Q
471 *
472             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
473             CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
474      $                    TAUQ2(P+I) )
475             X22(P+I,Q+I) = ONE
476 *
477             CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
478      $                  TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
479 *
480          END DO
481 *
482       END IF
483 *
484       RETURN
485 *
486 *     End of DORBDB
487 *
488       END
489