1       SUBROUTINE DORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DORG2L generates an m by n real matrix Q with orthonormal columns,
 19 *  which is defined as the last n columns of a product of k elementary
 20 *  reflectors of order m
 21 *
 22 *        Q  =  H(k) . . . H(2) H(1)
 23 *
 24 *  as returned by DGEQLF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. M >= N >= 0.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. N >= K >= 0.
 38 *
 39 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 40 *          On entry, the (n-k+i)-th column must contain the vector which
 41 *          defines the elementary reflector H(i), for i = 1,2,...,k, as
 42 *          returned by DGEQLF in the last k columns of its array
 43 *          argument A.
 44 *          On exit, the m by n matrix Q.
 45 *
 46 *  LDA     (input) INTEGER
 47 *          The first dimension of the array A. LDA >= max(1,M).
 48 *
 49 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 50 *          TAU(i) must contain the scalar factor of the elementary
 51 *          reflector H(i), as returned by DGEQLF.
 52 *
 53 *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
 54 *
 55 *  INFO    (output) INTEGER
 56 *          = 0: successful exit
 57 *          < 0: if INFO = -i, the i-th argument has an illegal value
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       DOUBLE PRECISION   ONE, ZERO
 63       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 64 *     ..
 65 *     .. Local Scalars ..
 66       INTEGER            I, II, J, L
 67 *     ..
 68 *     .. External Subroutines ..
 69       EXTERNAL           DLARF, DSCAL, XERBLA
 70 *     ..
 71 *     .. Intrinsic Functions ..
 72       INTRINSIC          MAX
 73 *     ..
 74 *     .. Executable Statements ..
 75 *
 76 *     Test the input arguments
 77 *
 78       INFO = 0
 79       IF( M.LT.0 ) THEN
 80          INFO = -1
 81       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 82          INFO = -2
 83       ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
 84          INFO = -3
 85       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 86          INFO = -5
 87       END IF
 88       IF( INFO.NE.0 ) THEN
 89          CALL XERBLA( 'DORG2L'-INFO )
 90          RETURN
 91       END IF
 92 *
 93 *     Quick return if possible
 94 *
 95       IF( N.LE.0 )
 96      $   RETURN
 97 *
 98 *     Initialise columns 1:n-k to columns of the unit matrix
 99 *
100       DO 20 J = 1, N - K
101          DO 10 L = 1, M
102             A( L, J ) = ZERO
103    10    CONTINUE
104          A( M-N+J, J ) = ONE
105    20 CONTINUE
106 *
107       DO 40 I = 1, K
108          II = N - K + I
109 *
110 *        Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
111 *
112          A( M-N+II, II ) = ONE
113          CALL DLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A,
114      $               LDA, WORK )
115          CALL DSCAL( M-N+II-1-TAU( I ), A( 1, II ), 1 )
116          A( M-N+II, II ) = ONE - TAU( I )
117 *
118 *        Set A(m-k+i+1:m,n-k+i) to zero
119 *
120          DO 30 L = M - N + II + 1, M
121             A( L, II ) = ZERO
122    30    CONTINUE
123    40 CONTINUE
124       RETURN
125 *
126 *     End of DORG2L
127 *
128       END