1       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          VECT
 10       INTEGER            INFO, K, LDA, LWORK, M, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DORGBR generates one of the real orthogonal matrices Q or P**T
 20 *  determined by DGEBRD when reducing a real matrix A to bidiagonal
 21 *  form: A = Q * B * P**T.  Q and P**T are defined as products of
 22 *  elementary reflectors H(i) or G(i) respectively.
 23 *
 24 *  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
 25 *  is of order M:
 26 *  if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
 27 *  columns of Q, where m >= n >= k;
 28 *  if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
 29 *  M-by-M matrix.
 30 *
 31 *  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
 32 *  is of order N:
 33 *  if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
 34 *  rows of P**T, where n >= m >= k;
 35 *  if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
 36 *  an N-by-N matrix.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  VECT    (input) CHARACTER*1
 42 *          Specifies whether the matrix Q or the matrix P**T is
 43 *          required, as defined in the transformation applied by DGEBRD:
 44 *          = 'Q':  generate Q;
 45 *          = 'P':  generate P**T.
 46 *
 47 *  M       (input) INTEGER
 48 *          The number of rows of the matrix Q or P**T to be returned.
 49 *          M >= 0.
 50 *
 51 *  N       (input) INTEGER
 52 *          The number of columns of the matrix Q or P**T to be returned.
 53 *          N >= 0.
 54 *          If VECT = 'Q', M >= N >= min(M,K);
 55 *          if VECT = 'P', N >= M >= min(N,K).
 56 *
 57 *  K       (input) INTEGER
 58 *          If VECT = 'Q', the number of columns in the original M-by-K
 59 *          matrix reduced by DGEBRD.
 60 *          If VECT = 'P', the number of rows in the original K-by-N
 61 *          matrix reduced by DGEBRD.
 62 *          K >= 0.
 63 *
 64 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 65 *          On entry, the vectors which define the elementary reflectors,
 66 *          as returned by DGEBRD.
 67 *          On exit, the M-by-N matrix Q or P**T.
 68 *
 69 *  LDA     (input) INTEGER
 70 *          The leading dimension of the array A. LDA >= max(1,M).
 71 *
 72 *  TAU     (input) DOUBLE PRECISION array, dimension
 73 *                                (min(M,K)) if VECT = 'Q'
 74 *                                (min(N,K)) if VECT = 'P'
 75 *          TAU(i) must contain the scalar factor of the elementary
 76 *          reflector H(i) or G(i), which determines Q or P**T, as
 77 *          returned by DGEBRD in its array argument TAUQ or TAUP.
 78 *
 79 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 80 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 81 *
 82 *  LWORK   (input) INTEGER
 83 *          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
 84 *          For optimum performance LWORK >= min(M,N)*NB, where NB
 85 *          is the optimal blocksize.
 86 *
 87 *          If LWORK = -1, then a workspace query is assumed; the routine
 88 *          only calculates the optimal size of the WORK array, returns
 89 *          this value as the first entry of the WORK array, and no error
 90 *          message related to LWORK is issued by XERBLA.
 91 *
 92 *  INFO    (output) INTEGER
 93 *          = 0:  successful exit
 94 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 95 *
 96 *  =====================================================================
 97 *
 98 *     .. Parameters ..
 99       DOUBLE PRECISION   ZERO, ONE
100       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
101 *     ..
102 *     .. Local Scalars ..
103       LOGICAL            LQUERY, WANTQ
104       INTEGER            I, IINFO, J, LWKOPT, MN, NB
105 *     ..
106 *     .. External Functions ..
107       LOGICAL            LSAME
108       INTEGER            ILAENV
109       EXTERNAL           LSAME, ILAENV
110 *     ..
111 *     .. External Subroutines ..
112       EXTERNAL           DORGLQ, DORGQR, XERBLA
113 *     ..
114 *     .. Intrinsic Functions ..
115       INTRINSIC          MAXMIN
116 *     ..
117 *     .. Executable Statements ..
118 *
119 *     Test the input arguments
120 *
121       INFO = 0
122       WANTQ = LSAME( VECT, 'Q' )
123       MN = MIN( M, N )
124       LQUERY = ( LWORK.EQ.-1 )
125       IF.NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
126          INFO = -1
127       ELSE IF( M.LT.0 ) THEN
128          INFO = -2
129       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT..OR. N.LT.MIN( M,
130      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT..OR. M.LT.
131      $         MIN( N, K ) ) ) ) THEN
132          INFO = -3
133       ELSE IF( K.LT.0 ) THEN
134          INFO = -4
135       ELSE IF( LDA.LT.MAX1, M ) ) THEN
136          INFO = -6
137       ELSE IF( LWORK.LT.MAX1, MN ) .AND. .NOT.LQUERY ) THEN
138          INFO = -9
139       END IF
140 *
141       IF( INFO.EQ.0 ) THEN
142          IF( WANTQ ) THEN
143             NB = ILAENV( 1'DORGQR'' ', M, N, K, -1 )
144          ELSE
145             NB = ILAENV( 1'DORGLQ'' ', M, N, K, -1 )
146          END IF
147          LWKOPT = MAX1, MN )*NB
148          WORK( 1 ) = LWKOPT
149       END IF
150 *
151       IF( INFO.NE.0 ) THEN
152          CALL XERBLA( 'DORGBR'-INFO )
153          RETURN
154       ELSE IF( LQUERY ) THEN
155          RETURN
156       END IF
157 *
158 *     Quick return if possible
159 *
160       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
161          WORK( 1 ) = 1
162          RETURN
163       END IF
164 *
165       IF( WANTQ ) THEN
166 *
167 *        Form Q, determined by a call to DGEBRD to reduce an m-by-k
168 *        matrix
169 *
170          IF( M.GE.K ) THEN
171 *
172 *           If m >= k, assume m >= n >= k
173 *
174             CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
175 *
176          ELSE
177 *
178 *           If m < k, assume m = n
179 *
180 *           Shift the vectors which define the elementary reflectors one
181 *           column to the right, and set the first row and column of Q
182 *           to those of the unit matrix
183 *
184             DO 20 J = M, 2-1
185                A( 1, J ) = ZERO
186                DO 10 I = J + 1, M
187                   A( I, J ) = A( I, J-1 )
188    10          CONTINUE
189    20       CONTINUE
190             A( 11 ) = ONE
191             DO 30 I = 2, M
192                A( I, 1 ) = ZERO
193    30       CONTINUE
194             IF( M.GT.1 ) THEN
195 *
196 *              Form Q(2:m,2:m)
197 *
198                CALL DORGQR( M-1, M-1, M-1, A( 22 ), LDA, TAU, WORK,
199      $                      LWORK, IINFO )
200             END IF
201          END IF
202       ELSE
203 *
204 *        Form P**T, determined by a call to DGEBRD to reduce a k-by-n
205 *        matrix
206 *
207          IF( K.LT.N ) THEN
208 *
209 *           If k < n, assume k <= m <= n
210 *
211             CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
212 *
213          ELSE
214 *
215 *           If k >= n, assume m = n
216 *
217 *           Shift the vectors which define the elementary reflectors one
218 *           row downward, and set the first row and column of P**T to
219 *           those of the unit matrix
220 *
221             A( 11 ) = ONE
222             DO 40 I = 2, N
223                A( I, 1 ) = ZERO
224    40       CONTINUE
225             DO 60 J = 2, N
226                DO 50 I = J - 12-1
227                   A( I, J ) = A( I-1, J )
228    50          CONTINUE
229                A( 1, J ) = ZERO
230    60       CONTINUE
231             IF( N.GT.1 ) THEN
232 *
233 *              Form P**T(2:n,2:n)
234 *
235                CALL DORGLQ( N-1, N-1, N-1, A( 22 ), LDA, TAU, WORK,
236      $                      LWORK, IINFO )
237             END IF
238          END IF
239       END IF
240       WORK( 1 ) = LWKOPT
241       RETURN
242 *
243 *     End of DORGBR
244 *
245       END