1       SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DORGL2 generates an m by n real matrix Q with orthonormal rows,
 19 *  which is defined as the first m rows of a product of k elementary
 20 *  reflectors of order n
 21 *
 22 *        Q  =  H(k) . . . H(2) H(1)
 23 *
 24 *  as returned by DGELQF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. N >= M.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. M >= K >= 0.
 38 *
 39 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 40 *          On entry, the i-th row must contain the vector which defines
 41 *          the elementary reflector H(i), for i = 1,2,...,k, as returned
 42 *          by DGELQF in the first k rows of its array argument A.
 43 *          On exit, the m-by-n matrix Q.
 44 *
 45 *  LDA     (input) INTEGER
 46 *          The first dimension of the array A. LDA >= max(1,M).
 47 *
 48 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 49 *          TAU(i) must contain the scalar factor of the elementary
 50 *          reflector H(i), as returned by DGELQF.
 51 *
 52 *  WORK    (workspace) DOUBLE PRECISION array, dimension (M)
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument has an illegal value
 57 *
 58 *  =====================================================================
 59 *
 60 *     .. Parameters ..
 61       DOUBLE PRECISION   ONE, ZERO
 62       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 63 *     ..
 64 *     .. Local Scalars ..
 65       INTEGER            I, J, L
 66 *     ..
 67 *     .. External Subroutines ..
 68       EXTERNAL           DLARF, DSCAL, XERBLA
 69 *     ..
 70 *     .. Intrinsic Functions ..
 71       INTRINSIC          MAX
 72 *     ..
 73 *     .. Executable Statements ..
 74 *
 75 *     Test the input arguments
 76 *
 77       INFO = 0
 78       IF( M.LT.0 ) THEN
 79          INFO = -1
 80       ELSE IF( N.LT.M ) THEN
 81          INFO = -2
 82       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
 83          INFO = -3
 84       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 85          INFO = -5
 86       END IF
 87       IF( INFO.NE.0 ) THEN
 88          CALL XERBLA( 'DORGL2'-INFO )
 89          RETURN
 90       END IF
 91 *
 92 *     Quick return if possible
 93 *
 94       IF( M.LE.0 )
 95      $   RETURN
 96 *
 97       IF( K.LT.M ) THEN
 98 *
 99 *        Initialise rows k+1:m to rows of the unit matrix
100 *
101          DO 20 J = 1, N
102             DO 10 L = K + 1, M
103                A( L, J ) = ZERO
104    10       CONTINUE
105             IF( J.GT..AND. J.LE.M )
106      $         A( J, J ) = ONE
107    20    CONTINUE
108       END IF
109 *
110       DO 40 I = K, 1-1
111 *
112 *        Apply H(i) to A(i:m,i:n) from the right
113 *
114          IF( I.LT.N ) THEN
115             IF( I.LT.M ) THEN
116                A( I, I ) = ONE
117                CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
118      $                     TAU( I ), A( I+1, I ), LDA, WORK )
119             END IF
120             CALL DSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
121          END IF
122          A( I, I ) = ONE - TAU( I )
123 *
124 *        Set A(i,1:i-1) to zero
125 *
126          DO 30 L = 1, I - 1
127             A( I, L ) = ZERO
128    30    CONTINUE
129    40 CONTINUE
130       RETURN
131 *
132 *     End of DORGL2
133 *
134       END