1       SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DORGQR generates an M-by-N real matrix Q with orthonormal columns,
 19 *  which is defined as the first N columns of a product of K elementary
 20 *  reflectors of order M
 21 *
 22 *        Q  =  H(1) H(2) . . . H(k)
 23 *
 24 *  as returned by DGEQRF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. M >= N >= 0.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. N >= K >= 0.
 38 *
 39 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 40 *          On entry, the i-th column must contain the vector which
 41 *          defines the elementary reflector H(i), for i = 1,2,...,k, as
 42 *          returned by DGEQRF in the first k columns of its array
 43 *          argument A.
 44 *          On exit, the M-by-N matrix Q.
 45 *
 46 *  LDA     (input) INTEGER
 47 *          The first dimension of the array A. LDA >= max(1,M).
 48 *
 49 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 50 *          TAU(i) must contain the scalar factor of the elementary
 51 *          reflector H(i), as returned by DGEQRF.
 52 *
 53 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 54 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 55 *
 56 *  LWORK   (input) INTEGER
 57 *          The dimension of the array WORK. LWORK >= max(1,N).
 58 *          For optimum performance LWORK >= N*NB, where NB is the
 59 *          optimal blocksize.
 60 *
 61 *          If LWORK = -1, then a workspace query is assumed; the routine
 62 *          only calculates the optimal size of the WORK array, returns
 63 *          this value as the first entry of the WORK array, and no error
 64 *          message related to LWORK is issued by XERBLA.
 65 *
 66 *  INFO    (output) INTEGER
 67 *          = 0:  successful exit
 68 *          < 0:  if INFO = -i, the i-th argument has an illegal value
 69 *
 70 *  =====================================================================
 71 *
 72 *     .. Parameters ..
 73       DOUBLE PRECISION   ZERO
 74       PARAMETER          ( ZERO = 0.0D+0 )
 75 *     ..
 76 *     .. Local Scalars ..
 77       LOGICAL            LQUERY
 78       INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
 79      $                   LWKOPT, NB, NBMIN, NX
 80 *     ..
 81 *     .. External Subroutines ..
 82       EXTERNAL           DLARFB, DLARFT, DORG2R, XERBLA
 83 *     ..
 84 *     .. Intrinsic Functions ..
 85       INTRINSIC          MAXMIN
 86 *     ..
 87 *     .. External Functions ..
 88       INTEGER            ILAENV
 89       EXTERNAL           ILAENV
 90 *     ..
 91 *     .. Executable Statements ..
 92 *
 93 *     Test the input arguments
 94 *
 95       INFO = 0
 96       NB = ILAENV( 1'DORGQR'' ', M, N, K, -1 )
 97       LWKOPT = MAX1, N )*NB
 98       WORK( 1 ) = LWKOPT
 99       LQUERY = ( LWORK.EQ.-1 )
100       IF( M.LT.0 ) THEN
101          INFO = -1
102       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
103          INFO = -2
104       ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
105          INFO = -3
106       ELSE IF( LDA.LT.MAX1, M ) ) THEN
107          INFO = -5
108       ELSE IF( LWORK.LT.MAX1, N ) .AND. .NOT.LQUERY ) THEN
109          INFO = -8
110       END IF
111       IF( INFO.NE.0 ) THEN
112          CALL XERBLA( 'DORGQR'-INFO )
113          RETURN
114       ELSE IF( LQUERY ) THEN
115          RETURN
116       END IF
117 *
118 *     Quick return if possible
119 *
120       IF( N.LE.0 ) THEN
121          WORK( 1 ) = 1
122          RETURN
123       END IF
124 *
125       NBMIN = 2
126       NX = 0
127       IWS = N
128       IF( NB.GT.1 .AND. NB.LT.K ) THEN
129 *
130 *        Determine when to cross over from blocked to unblocked code.
131 *
132          NX = MAX0, ILAENV( 3'DORGQR'' ', M, N, K, -1 ) )
133          IF( NX.LT.K ) THEN
134 *
135 *           Determine if workspace is large enough for blocked code.
136 *
137             LDWORK = N
138             IWS = LDWORK*NB
139             IF( LWORK.LT.IWS ) THEN
140 *
141 *              Not enough workspace to use optimal NB:  reduce NB and
142 *              determine the minimum value of NB.
143 *
144                NB = LWORK / LDWORK
145                NBMIN = MAX2, ILAENV( 2'DORGQR'' ', M, N, K, -1 ) )
146             END IF
147          END IF
148       END IF
149 *
150       IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
151 *
152 *        Use blocked code after the last block.
153 *        The first kk columns are handled by the block method.
154 *
155          KI = ( ( K-NX-1 ) / NB )*NB
156          KK = MIN( K, KI+NB )
157 *
158 *        Set A(1:kk,kk+1:n) to zero.
159 *
160          DO 20 J = KK + 1, N
161             DO 10 I = 1, KK
162                A( I, J ) = ZERO
163    10       CONTINUE
164    20    CONTINUE
165       ELSE
166          KK = 0
167       END IF
168 *
169 *     Use unblocked code for the last or only block.
170 *
171       IF( KK.LT.N )
172      $   CALL DORG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
173      $                TAU( KK+1 ), WORK, IINFO )
174 *
175       IF( KK.GT.0 ) THEN
176 *
177 *        Use blocked code
178 *
179          DO 50 I = KI + 11-NB
180             IB = MIN( NB, K-I+1 )
181             IF( I+IB.LE.N ) THEN
182 *
183 *              Form the triangular factor of the block reflector
184 *              H = H(i) H(i+1) . . . H(i+ib-1)
185 *
186                CALL DLARFT( 'Forward''Columnwise', M-I+1, IB,
187      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
188 *
189 *              Apply H to A(i:m,i+ib:n) from the left
190 *
191                CALL DLARFB( 'Left''No transpose''Forward',
192      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
193      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
194      $                      LDA, WORK( IB+1 ), LDWORK )
195             END IF
196 *
197 *           Apply H to rows i:m of current block
198 *
199             CALL DORG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
200      $                   IINFO )
201 *
202 *           Set rows 1:i-1 of current block to zero
203 *
204             DO 40 J = I, I + IB - 1
205                DO 30 L = 1, I - 1
206                   A( L, J ) = ZERO
207    30          CONTINUE
208    40       CONTINUE
209    50    CONTINUE
210       END IF
211 *
212       WORK( 1 ) = IWS
213       RETURN
214 *
215 *     End of DORGQR
216 *
217       END