1       SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DORGR2 generates an m by n real matrix Q with orthonormal rows,
 19 *  which is defined as the last m rows of a product of k elementary
 20 *  reflectors of order n
 21 *
 22 *        Q  =  H(1) H(2) . . . H(k)
 23 *
 24 *  as returned by DGERQF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. N >= M.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. M >= K >= 0.
 38 *
 39 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 40 *          On entry, the (m-k+i)-th row must contain the vector which
 41 *          defines the elementary reflector H(i), for i = 1,2,...,k, as
 42 *          returned by DGERQF in the last k rows of its array argument
 43 *          A.
 44 *          On exit, the m by n matrix Q.
 45 *
 46 *  LDA     (input) INTEGER
 47 *          The first dimension of the array A. LDA >= max(1,M).
 48 *
 49 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 50 *          TAU(i) must contain the scalar factor of the elementary
 51 *          reflector H(i), as returned by DGERQF.
 52 *
 53 *  WORK    (workspace) DOUBLE PRECISION array, dimension (M)
 54 *
 55 *  INFO    (output) INTEGER
 56 *          = 0: successful exit
 57 *          < 0: if INFO = -i, the i-th argument has an illegal value
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       DOUBLE PRECISION   ONE, ZERO
 63       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 64 *     ..
 65 *     .. Local Scalars ..
 66       INTEGER            I, II, J, L
 67 *     ..
 68 *     .. External Subroutines ..
 69       EXTERNAL           DLARF, DSCAL, XERBLA
 70 *     ..
 71 *     .. Intrinsic Functions ..
 72       INTRINSIC          MAX
 73 *     ..
 74 *     .. Executable Statements ..
 75 *
 76 *     Test the input arguments
 77 *
 78       INFO = 0
 79       IF( M.LT.0 ) THEN
 80          INFO = -1
 81       ELSE IF( N.LT.M ) THEN
 82          INFO = -2
 83       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
 84          INFO = -3
 85       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 86          INFO = -5
 87       END IF
 88       IF( INFO.NE.0 ) THEN
 89          CALL XERBLA( 'DORGR2'-INFO )
 90          RETURN
 91       END IF
 92 *
 93 *     Quick return if possible
 94 *
 95       IF( M.LE.0 )
 96      $   RETURN
 97 *
 98       IF( K.LT.M ) THEN
 99 *
100 *        Initialise rows 1:m-k to rows of the unit matrix
101 *
102          DO 20 J = 1, N
103             DO 10 L = 1, M - K
104                A( L, J ) = ZERO
105    10       CONTINUE
106             IF( J.GT.N-.AND. J.LE.N-K )
107      $         A( M-N+J, J ) = ONE
108    20    CONTINUE
109       END IF
110 *
111       DO 40 I = 1, K
112          II = M - K + I
113 *
114 *        Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
115 *
116          A( II, N-M+II ) = ONE
117          CALL DLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
118      $               A, LDA, WORK )
119          CALL DSCAL( N-M+II-1-TAU( I ), A( II, 1 ), LDA )
120          A( II, N-M+II ) = ONE - TAU( I )
121 *
122 *        Set A(m-k+i,n-k+i+1:n) to zero
123 *
124          DO 30 L = N - M + II + 1, N
125             A( II, L ) = ZERO
126    30    CONTINUE
127    40 CONTINUE
128       RETURN
129 *
130 *     End of DORGR2
131 *
132       END