1       SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  2      $                   WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS
 11       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DORMQL overwrites the general real M-by-N matrix C with
 21 *
 22 *                  SIDE = 'L'     SIDE = 'R'
 23 *  TRANS = 'N':      Q * C          C * Q
 24 *  TRANS = 'T':      Q**T * C       C * Q**T
 25 *
 26 *  where Q is a real orthogonal matrix defined as the product of k
 27 *  elementary reflectors
 28 *
 29 *        Q = H(k) . . . H(2) H(1)
 30 *
 31 *  as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
 32 *  if SIDE = 'R'.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  SIDE    (input) CHARACTER*1
 38 *          = 'L': apply Q or Q**T from the Left;
 39 *          = 'R': apply Q or Q**T from the Right.
 40 *
 41 *  TRANS   (input) CHARACTER*1
 42 *          = 'N':  No transpose, apply Q;
 43 *          = 'T':  Transpose, apply Q**T.
 44 *
 45 *  M       (input) INTEGER
 46 *          The number of rows of the matrix C. M >= 0.
 47 *
 48 *  N       (input) INTEGER
 49 *          The number of columns of the matrix C. N >= 0.
 50 *
 51 *  K       (input) INTEGER
 52 *          The number of elementary reflectors whose product defines
 53 *          the matrix Q.
 54 *          If SIDE = 'L', M >= K >= 0;
 55 *          if SIDE = 'R', N >= K >= 0.
 56 *
 57 *  A       (input) DOUBLE PRECISION array, dimension (LDA,K)
 58 *          The i-th column must contain the vector which defines the
 59 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
 60 *          DGEQLF in the last k columns of its array argument A.
 61 *          A is modified by the routine but restored on exit.
 62 *
 63 *  LDA     (input) INTEGER
 64 *          The leading dimension of the array A.
 65 *          If SIDE = 'L', LDA >= max(1,M);
 66 *          if SIDE = 'R', LDA >= max(1,N).
 67 *
 68 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 69 *          TAU(i) must contain the scalar factor of the elementary
 70 *          reflector H(i), as returned by DGEQLF.
 71 *
 72 *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
 73 *          On entry, the M-by-N matrix C.
 74 *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 75 *
 76 *  LDC     (input) INTEGER
 77 *          The leading dimension of the array C. LDC >= max(1,M).
 78 *
 79 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 80 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 81 *
 82 *  LWORK   (input) INTEGER
 83 *          The dimension of the array WORK.
 84 *          If SIDE = 'L', LWORK >= max(1,N);
 85 *          if SIDE = 'R', LWORK >= max(1,M).
 86 *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 87 *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 88 *          blocksize.
 89 *
 90 *          If LWORK = -1, then a workspace query is assumed; the routine
 91 *          only calculates the optimal size of the WORK array, returns
 92 *          this value as the first entry of the WORK array, and no error
 93 *          message related to LWORK is issued by XERBLA.
 94 *
 95 *  INFO    (output) INTEGER
 96 *          = 0:  successful exit
 97 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 98 *
 99 *  =====================================================================
100 *
101 *     .. Parameters ..
102       INTEGER            NBMAX, LDT
103       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
104 *     ..
105 *     .. Local Scalars ..
106       LOGICAL            LEFT, LQUERY, NOTRAN
107       INTEGER            I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT,
108      $                   MI, NB, NBMIN, NI, NQ, NW
109 *     ..
110 *     .. Local Arrays ..
111       DOUBLE PRECISION   T( LDT, NBMAX )
112 *     ..
113 *     .. External Functions ..
114       LOGICAL            LSAME
115       INTEGER            ILAENV
116       EXTERNAL           LSAME, ILAENV
117 *     ..
118 *     .. External Subroutines ..
119       EXTERNAL           DLARFB, DLARFT, DORM2L, XERBLA
120 *     ..
121 *     .. Intrinsic Functions ..
122       INTRINSIC          MAXMIN
123 *     ..
124 *     .. Executable Statements ..
125 *
126 *     Test the input arguments
127 *
128       INFO = 0
129       LEFT = LSAME( SIDE, 'L' )
130       NOTRAN = LSAME( TRANS, 'N' )
131       LQUERY = ( LWORK.EQ.-1 )
132 *
133 *     NQ is the order of Q and NW is the minimum dimension of WORK
134 *
135       IF( LEFT ) THEN
136          NQ = M
137          NW = MAX1, N )
138       ELSE
139          NQ = N
140          NW = MAX1, M )
141       END IF
142       IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
143          INFO = -1
144       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
145          INFO = -2
146       ELSE IF( M.LT.0 ) THEN
147          INFO = -3
148       ELSE IF( N.LT.0 ) THEN
149          INFO = -4
150       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
151          INFO = -5
152       ELSE IF( LDA.LT.MAX1, NQ ) ) THEN
153          INFO = -7
154       ELSE IF( LDC.LT.MAX1, M ) ) THEN
155          INFO = -10
156       END IF
157 *
158       IF( INFO.EQ.0 ) THEN
159          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
160             LWKOPT = 1
161          ELSE
162 *
163 *           Determine the block size.  NB may be at most NBMAX, where
164 *           NBMAX is used to define the local array T.
165 *
166             NB = MIN( NBMAX, ILAENV( 1'DORMQL', SIDE // TRANS, M, N,
167      $                               K, -1 ) )
168             LWKOPT = NW*NB
169          END IF
170          WORK( 1 ) = LWKOPT
171 *
172          IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
173             INFO = -12
174          END IF
175       END IF
176 *
177       IF( INFO.NE.0 ) THEN
178          CALL XERBLA( 'DORMQL'-INFO )
179          RETURN
180       ELSE IF( LQUERY ) THEN
181          RETURN
182       END IF
183 *
184 *     Quick return if possible
185 *
186       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
187          RETURN
188       END IF
189 *
190       NBMIN = 2
191       LDWORK = NW
192       IF( NB.GT.1 .AND. NB.LT.K ) THEN
193          IWS = NW*NB
194          IF( LWORK.LT.IWS ) THEN
195             NB = LWORK / LDWORK
196             NBMIN = MAX2, ILAENV( 2'DORMQL', SIDE // TRANS, M, N, K,
197      $              -1 ) )
198          END IF
199       ELSE
200          IWS = NW
201       END IF
202 *
203       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
204 *
205 *        Use unblocked code
206 *
207          CALL DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
208      $                IINFO )
209       ELSE
210 *
211 *        Use blocked code
212 *
213          IF( ( LEFT .AND. NOTRAN ) .OR.
214      $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
215             I1 = 1
216             I2 = K
217             I3 = NB
218          ELSE
219             I1 = ( ( K-1 ) / NB )*NB + 1
220             I2 = 1
221             I3 = -NB
222          END IF
223 *
224          IF( LEFT ) THEN
225             NI = N
226          ELSE
227             MI = M
228          END IF
229 *
230          DO 10 I = I1, I2, I3
231             IB = MIN( NB, K-I+1 )
232 *
233 *           Form the triangular factor of the block reflector
234 *           H = H(i+ib-1) . . . H(i+1) H(i)
235 *
236             CALL DLARFT( 'Backward''Columnwise', NQ-K+I+IB-1, IB,
237      $                   A( 1, I ), LDA, TAU( I ), T, LDT )
238             IF( LEFT ) THEN
239 *
240 *              H or H**T is applied to C(1:m-k+i+ib-1,1:n)
241 *
242                MI = M - K + I + IB - 1
243             ELSE
244 *
245 *              H or H**T is applied to C(1:m,1:n-k+i+ib-1)
246 *
247                NI = N - K + I + IB - 1
248             END IF
249 *
250 *           Apply H or H**T
251 *
252             CALL DLARFB( SIDE, TRANS, 'Backward''Columnwise', MI, NI,
253      $                   IB, A( 1, I ), LDA, T, LDT, C, LDC, WORK,
254      $                   LDWORK )
255    10    CONTINUE
256       END IF
257       WORK( 1 ) = LWKOPT
258       RETURN
259 *
260 *     End of DORMQL
261 *
262       END