1       SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  2      $                   WORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS
 11       INTEGER            INFO, K, L, LDA, LDC, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DORMR3 overwrites the general real m by n matrix C with
 21 *
 22 *        Q * C  if SIDE = 'L' and TRANS = 'N', or
 23 *
 24 *        Q**T* C  if SIDE = 'L' and TRANS = 'C', or
 25 *
 26 *        C * Q  if SIDE = 'R' and TRANS = 'N', or
 27 *
 28 *        C * Q**T if SIDE = 'R' and TRANS = 'C',
 29 *
 30 *  where Q is a real orthogonal matrix defined as the product of k
 31 *  elementary reflectors
 32 *
 33 *        Q = H(1) H(2) . . . H(k)
 34 *
 35 *  as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
 36 *  if SIDE = 'R'.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  SIDE    (input) CHARACTER*1
 42 *          = 'L': apply Q or Q**T from the Left
 43 *          = 'R': apply Q or Q**T from the Right
 44 *
 45 *  TRANS   (input) CHARACTER*1
 46 *          = 'N': apply Q  (No transpose)
 47 *          = 'T': apply Q**T (Transpose)
 48 *
 49 *  M       (input) INTEGER
 50 *          The number of rows of the matrix C. M >= 0.
 51 *
 52 *  N       (input) INTEGER
 53 *          The number of columns of the matrix C. N >= 0.
 54 *
 55 *  K       (input) INTEGER
 56 *          The number of elementary reflectors whose product defines
 57 *          the matrix Q.
 58 *          If SIDE = 'L', M >= K >= 0;
 59 *          if SIDE = 'R', N >= K >= 0.
 60 *
 61 *  L       (input) INTEGER
 62 *          The number of columns of the matrix A containing
 63 *          the meaningful part of the Householder reflectors.
 64 *          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 65 *
 66 *  A       (input) DOUBLE PRECISION array, dimension
 67 *                               (LDA,M) if SIDE = 'L',
 68 *                               (LDA,N) if SIDE = 'R'
 69 *          The i-th row must contain the vector which defines the
 70 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
 71 *          DTZRZF in the last k rows of its array argument A.
 72 *          A is modified by the routine but restored on exit.
 73 *
 74 *  LDA     (input) INTEGER
 75 *          The leading dimension of the array A. LDA >= max(1,K).
 76 *
 77 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 78 *          TAU(i) must contain the scalar factor of the elementary
 79 *          reflector H(i), as returned by DTZRZF.
 80 *
 81 *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
 82 *          On entry, the m-by-n matrix C.
 83 *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 84 *
 85 *  LDC     (input) INTEGER
 86 *          The leading dimension of the array C. LDC >= max(1,M).
 87 *
 88 *  WORK    (workspace) DOUBLE PRECISION array, dimension
 89 *                                   (N) if SIDE = 'L',
 90 *                                   (M) if SIDE = 'R'
 91 *
 92 *  INFO    (output) INTEGER
 93 *          = 0: successful exit
 94 *          < 0: if INFO = -i, the i-th argument had an illegal value
 95 *
 96 *  Further Details
 97 *  ===============
 98 *
 99 *  Based on contributions by
100 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
101 *
102 *  =====================================================================
103 *
104 *     .. Local Scalars ..
105       LOGICAL            LEFT, NOTRAN
106       INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
107 *     ..
108 *     .. External Functions ..
109       LOGICAL            LSAME
110       EXTERNAL           LSAME
111 *     ..
112 *     .. External Subroutines ..
113       EXTERNAL           DLARZ, XERBLA
114 *     ..
115 *     .. Intrinsic Functions ..
116       INTRINSIC          MAX
117 *     ..
118 *     .. Executable Statements ..
119 *
120 *     Test the input arguments
121 *
122       INFO = 0
123       LEFT = LSAME( SIDE, 'L' )
124       NOTRAN = LSAME( TRANS, 'N' )
125 *
126 *     NQ is the order of Q
127 *
128       IF( LEFT ) THEN
129          NQ = M
130       ELSE
131          NQ = N
132       END IF
133       IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
134          INFO = -1
135       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
136          INFO = -2
137       ELSE IF( M.LT.0 ) THEN
138          INFO = -3
139       ELSE IF( N.LT.0 ) THEN
140          INFO = -4
141       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
142          INFO = -5
143       ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
144      $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
145          INFO = -6
146       ELSE IF( LDA.LT.MAX1, K ) ) THEN
147          INFO = -8
148       ELSE IF( LDC.LT.MAX1, M ) ) THEN
149          INFO = -11
150       END IF
151       IF( INFO.NE.0 ) THEN
152          CALL XERBLA( 'DORMR3'-INFO )
153          RETURN
154       END IF
155 *
156 *     Quick return if possible
157 *
158       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
159      $   RETURN
160 *
161       IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
162          I1 = 1
163          I2 = K
164          I3 = 1
165       ELSE
166          I1 = K
167          I2 = 1
168          I3 = -1
169       END IF
170 *
171       IF( LEFT ) THEN
172          NI = N
173          JA = M - L + 1
174          JC = 1
175       ELSE
176          MI = M
177          JA = N - L + 1
178          IC = 1
179       END IF
180 *
181       DO 10 I = I1, I2, I3
182          IF( LEFT ) THEN
183 *
184 *           H(i) or H(i)**T is applied to C(i:m,1:n)
185 *
186             MI = M - I + 1
187             IC = I
188          ELSE
189 *
190 *           H(i) or H(i)**T is applied to C(1:m,i:n)
191 *
192             NI = N - I + 1
193             JC = I
194          END IF
195 *
196 *        Apply H(i) or H(i)**T
197 *
198          CALL DLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAU( I ),
199      $               C( IC, JC ), LDC, WORK )
200 *
201    10 CONTINUE
202 *
203       RETURN
204 *
205 *     End of DORMR3
206 *
207       END