1       SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
  2      $                   WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS
 11       INTEGER            INFO, K, L, LDA, LDC, LWORK, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DORMRZ overwrites the general real M-by-N matrix C with
 21 *
 22 *                  SIDE = 'L'     SIDE = 'R'
 23 *  TRANS = 'N':      Q * C          C * Q
 24 *  TRANS = 'T':      Q**T * C       C * Q**T
 25 *
 26 *  where Q is a real orthogonal matrix defined as the product of k
 27 *  elementary reflectors
 28 *
 29 *        Q = H(1) H(2) . . . H(k)
 30 *
 31 *  as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
 32 *  if SIDE = 'R'.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  SIDE    (input) CHARACTER*1
 38 *          = 'L': apply Q or Q**T from the Left;
 39 *          = 'R': apply Q or Q**T from the Right.
 40 *
 41 *  TRANS   (input) CHARACTER*1
 42 *          = 'N':  No transpose, apply Q;
 43 *          = 'T':  Transpose, apply Q**T.
 44 *
 45 *  M       (input) INTEGER
 46 *          The number of rows of the matrix C. M >= 0.
 47 *
 48 *  N       (input) INTEGER
 49 *          The number of columns of the matrix C. N >= 0.
 50 *
 51 *  K       (input) INTEGER
 52 *          The number of elementary reflectors whose product defines
 53 *          the matrix Q.
 54 *          If SIDE = 'L', M >= K >= 0;
 55 *          if SIDE = 'R', N >= K >= 0.
 56 *
 57 *  L       (input) INTEGER
 58 *          The number of columns of the matrix A containing
 59 *          the meaningful part of the Householder reflectors.
 60 *          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 61 *
 62 *  A       (input) DOUBLE PRECISION array, dimension
 63 *                               (LDA,M) if SIDE = 'L',
 64 *                               (LDA,N) if SIDE = 'R'
 65 *          The i-th row must contain the vector which defines the
 66 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
 67 *          DTZRZF in the last k rows of its array argument A.
 68 *          A is modified by the routine but restored on exit.
 69 *
 70 *  LDA     (input) INTEGER
 71 *          The leading dimension of the array A. LDA >= max(1,K).
 72 *
 73 *  TAU     (input) DOUBLE PRECISION array, dimension (K)
 74 *          TAU(i) must contain the scalar factor of the elementary
 75 *          reflector H(i), as returned by DTZRZF.
 76 *
 77 *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
 78 *          On entry, the M-by-N matrix C.
 79 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
 80 *
 81 *  LDC     (input) INTEGER
 82 *          The leading dimension of the array C. LDC >= max(1,M).
 83 *
 84 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 85 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 86 *
 87 *  LWORK   (input) INTEGER
 88 *          The dimension of the array WORK.
 89 *          If SIDE = 'L', LWORK >= max(1,N);
 90 *          if SIDE = 'R', LWORK >= max(1,M).
 91 *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 92 *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 93 *          blocksize.
 94 *
 95 *          If LWORK = -1, then a workspace query is assumed; the routine
 96 *          only calculates the optimal size of the WORK array, returns
 97 *          this value as the first entry of the WORK array, and no error
 98 *          message related to LWORK is issued by XERBLA.
 99 *
100 *  INFO    (output) INTEGER
101 *          = 0:  successful exit
102 *          < 0:  if INFO = -i, the i-th argument had an illegal value
103 *
104 *  Further Details
105 *  ===============
106 *
107 *  Based on contributions by
108 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
109 *
110 *  =====================================================================
111 *
112 *     .. Parameters ..
113       INTEGER            NBMAX, LDT
114       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
115 *     ..
116 *     .. Local Scalars ..
117       LOGICAL            LEFT, LQUERY, NOTRAN
118       CHARACTER          TRANST
119       INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC,
120      $                   LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW
121 *     ..
122 *     .. Local Arrays ..
123       DOUBLE PRECISION   T( LDT, NBMAX )
124 *     ..
125 *     .. External Functions ..
126       LOGICAL            LSAME
127       INTEGER            ILAENV
128       EXTERNAL           LSAME, ILAENV
129 *     ..
130 *     .. External Subroutines ..
131       EXTERNAL           DLARZB, DLARZT, DORMR3, XERBLA
132 *     ..
133 *     .. Intrinsic Functions ..
134       INTRINSIC          MAXMIN
135 *     ..
136 *     .. Executable Statements ..
137 *
138 *     Test the input arguments
139 *
140       INFO = 0
141       LEFT = LSAME( SIDE, 'L' )
142       NOTRAN = LSAME( TRANS, 'N' )
143       LQUERY = ( LWORK.EQ.-1 )
144 *
145 *     NQ is the order of Q and NW is the minimum dimension of WORK
146 *
147       IF( LEFT ) THEN
148          NQ = M
149          NW = MAX1, N )
150       ELSE
151          NQ = N
152          NW = MAX1, M )
153       END IF
154       IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
155          INFO = -1
156       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
157          INFO = -2
158       ELSE IF( M.LT.0 ) THEN
159          INFO = -3
160       ELSE IF( N.LT.0 ) THEN
161          INFO = -4
162       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
163          INFO = -5
164       ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
165      $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
166          INFO = -6
167       ELSE IF( LDA.LT.MAX1, K ) ) THEN
168          INFO = -8
169       ELSE IF( LDC.LT.MAX1, M ) ) THEN
170          INFO = -11
171       END IF
172 *
173       IF( INFO.EQ.0 ) THEN
174          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
175             LWKOPT = 1
176          ELSE
177 *
178 *           Determine the block size.  NB may be at most NBMAX, where
179 *           NBMAX is used to define the local array T.
180 *
181             NB = MIN( NBMAX, ILAENV( 1'DORMRQ', SIDE // TRANS, M, N,
182      $                               K, -1 ) )
183             LWKOPT = NW*NB
184          END IF
185          WORK( 1 ) = LWKOPT
186 *
187          IF( LWORK.LT.MAX1, NW ) .AND. .NOT.LQUERY ) THEN
188             INFO = -13
189          END IF
190       END IF
191 *
192       IF( INFO.NE.0 ) THEN
193          CALL XERBLA( 'DORMRZ'-INFO )
194          RETURN
195       ELSE IF( LQUERY ) THEN
196          RETURN
197       END IF
198 *
199 *     Quick return if possible
200 *
201       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
202          WORK( 1 ) = 1
203          RETURN
204       END IF
205 *
206       NBMIN = 2
207       LDWORK = NW
208       IF( NB.GT.1 .AND. NB.LT.K ) THEN
209          IWS = NW*NB
210          IF( LWORK.LT.IWS ) THEN
211             NB = LWORK / LDWORK
212             NBMIN = MAX2, ILAENV( 2'DORMRQ', SIDE // TRANS, M, N, K,
213      $              -1 ) )
214          END IF
215       ELSE
216          IWS = NW
217       END IF
218 *
219       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
220 *
221 *        Use unblocked code
222 *
223          CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
224      $                WORK, IINFO )
225       ELSE
226 *
227 *        Use blocked code
228 *
229          IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
230      $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
231             I1 = 1
232             I2 = K
233             I3 = NB
234          ELSE
235             I1 = ( ( K-1 ) / NB )*NB + 1
236             I2 = 1
237             I3 = -NB
238          END IF
239 *
240          IF( LEFT ) THEN
241             NI = N
242             JC = 1
243             JA = M - L + 1
244          ELSE
245             MI = M
246             IC = 1
247             JA = N - L + 1
248          END IF
249 *
250          IF( NOTRAN ) THEN
251             TRANST = 'T'
252          ELSE
253             TRANST = 'N'
254          END IF
255 *
256          DO 10 I = I1, I2, I3
257             IB = MIN( NB, K-I+1 )
258 *
259 *           Form the triangular factor of the block reflector
260 *           H = H(i+ib-1) . . . H(i+1) H(i)
261 *
262             CALL DLARZT( 'Backward''Rowwise', L, IB, A( I, JA ), LDA,
263      $                   TAU( I ), T, LDT )
264 *
265             IF( LEFT ) THEN
266 *
267 *              H or H**T is applied to C(i:m,1:n)
268 *
269                MI = M - I + 1
270                IC = I
271             ELSE
272 *
273 *              H or H**T is applied to C(1:m,i:n)
274 *
275                NI = N - I + 1
276                JC = I
277             END IF
278 *
279 *           Apply H or H**T
280 *
281             CALL DLARZB( SIDE, TRANST, 'Backward''Rowwise', MI, NI,
282      $                   IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ),
283      $                   LDC, WORK, LDWORK )
284    10    CONTINUE
285 *
286       END IF
287 *
288       WORK( 1 ) = LWKOPT
289 *
290       RETURN
291 *
292 *     End of DORMRZ
293 *
294       END