1       SUBROUTINE DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     June 2010
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, KD, LDAB, N
 11       DOUBLE PRECISION   AMAX, SCOND
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   AB( LDAB, * ), S( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DPBEQU computes row and column scalings intended to equilibrate a
 21 *  symmetric positive definite band matrix A and reduce its condition
 22 *  number (with respect to the two-norm).  S contains the scale factors,
 23 *  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 24 *  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 25 *  choice of S puts the condition number of B within a factor N of the
 26 *  smallest possible condition number over all possible diagonal
 27 *  scalings.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangular of A is stored;
 34 *          = 'L':  Lower triangular of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  KD      (input) INTEGER
 40 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 41 *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 42 *
 43 *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 44 *          The upper or lower triangle of the symmetric band matrix A,
 45 *          stored in the first KD+1 rows of the array.  The j-th column
 46 *          of A is stored in the j-th column of the array AB as follows:
 47 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 48 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 49 *
 50 *  LDAB    (input) INTEGER
 51 *          The leading dimension of the array A.  LDAB >= KD+1.
 52 *
 53 *  S       (output) DOUBLE PRECISION array, dimension (N)
 54 *          If INFO = 0, S contains the scale factors for A.
 55 *
 56 *  SCOND   (output) DOUBLE PRECISION
 57 *          If INFO = 0, S contains the ratio of the smallest S(i) to
 58 *          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 59 *          large nor too small, it is not worth scaling by S.
 60 *
 61 *  AMAX    (output) DOUBLE PRECISION
 62 *          Absolute value of largest matrix element.  If AMAX is very
 63 *          close to overflow or very close to underflow, the matrix
 64 *          should be scaled.
 65 *
 66 *  INFO    (output) INTEGER
 67 *          = 0:  successful exit
 68 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 69 *          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 70 *
 71 *  =====================================================================
 72 *
 73 *     .. Parameters ..
 74       DOUBLE PRECISION   ZERO, ONE
 75       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 76 *     ..
 77 *     .. Local Scalars ..
 78       LOGICAL            UPPER
 79       INTEGER            I, J
 80       DOUBLE PRECISION   SMIN
 81 *     ..
 82 *     .. External Functions ..
 83       LOGICAL            LSAME
 84       EXTERNAL           LSAME
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           XERBLA
 88 *     ..
 89 *     .. Intrinsic Functions ..
 90       INTRINSIC          MAXMINSQRT
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94 *     Test the input parameters.
 95 *
 96       INFO = 0
 97       UPPER = LSAME( UPLO, 'U' )
 98       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 99          INFO = -1
100       ELSE IF( N.LT.0 ) THEN
101          INFO = -2
102       ELSE IF( KD.LT.0 ) THEN
103          INFO = -3
104       ELSE IF( LDAB.LT.KD+1 ) THEN
105          INFO = -5
106       END IF
107       IF( INFO.NE.0 ) THEN
108          CALL XERBLA( 'DPBEQU'-INFO )
109          RETURN
110       END IF
111 *
112 *     Quick return if possible
113 *
114       IF( N.EQ.0 ) THEN
115          SCOND = ONE
116          AMAX = ZERO
117          RETURN
118       END IF
119 *
120       IF( UPPER ) THEN
121          J = KD + 1
122       ELSE
123          J = 1
124       END IF
125 *
126 *     Initialize SMIN and AMAX.
127 *
128       S( 1 ) = AB( J, 1 )
129       SMIN = S( 1 )
130       AMAX = S( 1 )
131 *
132 *     Find the minimum and maximum diagonal elements.
133 *
134       DO 10 I = 2, N
135          S( I ) = AB( J, I )
136          SMIN = MIN( SMIN, S( I ) )
137          AMAX = MAX( AMAX, S( I ) )
138    10 CONTINUE
139 *
140       IF( SMIN.LE.ZERO ) THEN
141 *
142 *        Find the first non-positive diagonal element and return.
143 *
144          DO 20 I = 1, N
145             IF( S( I ).LE.ZERO ) THEN
146                INFO = I
147                RETURN
148             END IF
149    20    CONTINUE
150       ELSE
151 *
152 *        Set the scale factors to the reciprocals
153 *        of the diagonal elements.
154 *
155          DO 30 I = 1, N
156             S( I ) = ONE / SQRT( S( I ) )
157    30    CONTINUE
158 *
159 *        Compute SCOND = min(S(I)) / max(S(I))
160 *
161          SCOND = SQRT( SMIN ) / SQRT( AMAX )
162       END IF
163       RETURN
164 *
165 *     End of DPBEQU
166 *
167       END