1       SUBROUTINE DPOCON( UPLO, N, A, LDA, ANORM, RCOND, WORK, IWORK,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          UPLO
 13       INTEGER            INFO, LDA, N
 14       DOUBLE PRECISION   ANORM, RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IWORK( * )
 18       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  DPOCON estimates the reciprocal of the condition number (in the
 25 *  1-norm) of a real symmetric positive definite matrix using the
 26 *  Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  UPLO    (input) CHARACTER*1
 35 *          = 'U':  Upper triangle of A is stored;
 36 *          = 'L':  Lower triangle of A is stored.
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 42 *          The triangular factor U or L from the Cholesky factorization
 43 *          A = U**T*U or A = L*L**T, as computed by DPOTRF.
 44 *
 45 *  LDA     (input) INTEGER
 46 *          The leading dimension of the array A.  LDA >= max(1,N).
 47 *
 48 *  ANORM   (input) DOUBLE PRECISION
 49 *          The 1-norm (or infinity-norm) of the symmetric matrix A.
 50 *
 51 *  RCOND   (output) DOUBLE PRECISION
 52 *          The reciprocal of the condition number of the matrix A,
 53 *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 54 *          estimate of the 1-norm of inv(A) computed in this routine.
 55 *
 56 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 57 *
 58 *  IWORK   (workspace) INTEGER array, dimension (N)
 59 *
 60 *  INFO    (output) INTEGER
 61 *          = 0:  successful exit
 62 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 63 *
 64 *  =====================================================================
 65 *
 66 *     .. Parameters ..
 67       DOUBLE PRECISION   ONE, ZERO
 68       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 69 *     ..
 70 *     .. Local Scalars ..
 71       LOGICAL            UPPER
 72       CHARACTER          NORMIN
 73       INTEGER            IX, KASE
 74       DOUBLE PRECISION   AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
 75 *     ..
 76 *     .. Local Arrays ..
 77       INTEGER            ISAVE( 3 )
 78 *     ..
 79 *     .. External Functions ..
 80       LOGICAL            LSAME
 81       INTEGER            IDAMAX
 82       DOUBLE PRECISION   DLAMCH
 83       EXTERNAL           LSAME, IDAMAX, DLAMCH
 84 *     ..
 85 *     .. External Subroutines ..
 86       EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA
 87 *     ..
 88 *     .. Intrinsic Functions ..
 89       INTRINSIC          ABSMAX
 90 *     ..
 91 *     .. Executable Statements ..
 92 *
 93 *     Test the input parameters.
 94 *
 95       INFO = 0
 96       UPPER = LSAME( UPLO, 'U' )
 97       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 98          INFO = -1
 99       ELSE IF( N.LT.0 ) THEN
100          INFO = -2
101       ELSE IF( LDA.LT.MAX1, N ) ) THEN
102          INFO = -4
103       ELSE IF( ANORM.LT.ZERO ) THEN
104          INFO = -5
105       END IF
106       IF( INFO.NE.0 ) THEN
107          CALL XERBLA( 'DPOCON'-INFO )
108          RETURN
109       END IF
110 *
111 *     Quick return if possible
112 *
113       RCOND = ZERO
114       IF( N.EQ.0 ) THEN
115          RCOND = ONE
116          RETURN
117       ELSE IF( ANORM.EQ.ZERO ) THEN
118          RETURN
119       END IF
120 *
121       SMLNUM = DLAMCH( 'Safe minimum' )
122 *
123 *     Estimate the 1-norm of inv(A).
124 *
125       KASE = 0
126       NORMIN = 'N'
127    10 CONTINUE
128       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
129       IF( KASE.NE.0 ) THEN
130          IF( UPPER ) THEN
131 *
132 *           Multiply by inv(U**T).
133 *
134             CALL DLATRS( 'Upper''Transpose''Non-unit', NORMIN, N, A,
135      $                   LDA, WORK, SCALEL, WORK( 2*N+1 ), INFO )
136             NORMIN = 'Y'
137 *
138 *           Multiply by inv(U).
139 *
140             CALL DLATRS( 'Upper''No transpose''Non-unit', NORMIN, N,
141      $                   A, LDA, WORK, SCALEU, WORK( 2*N+1 ), INFO )
142          ELSE
143 *
144 *           Multiply by inv(L).
145 *
146             CALL DLATRS( 'Lower''No transpose''Non-unit', NORMIN, N,
147      $                   A, LDA, WORK, SCALEL, WORK( 2*N+1 ), INFO )
148             NORMIN = 'Y'
149 *
150 *           Multiply by inv(L**T).
151 *
152             CALL DLATRS( 'Lower''Transpose''Non-unit', NORMIN, N, A,
153      $                   LDA, WORK, SCALEU, WORK( 2*N+1 ), INFO )
154          END IF
155 *
156 *        Multiply by 1/SCALE if doing so will not cause overflow.
157 *
158          SCALE = SCALEL*SCALEU
159          IFSCALE.NE.ONE ) THEN
160             IX = IDAMAX( N, WORK, 1 )
161             IFSCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
162      $         GO TO 20
163             CALL DRSCL( N, SCALE, WORK, 1 )
164          END IF
165          GO TO 10
166       END IF
167 *
168 *     Compute the estimate of the reciprocal condition number.
169 *
170       IF( AINVNM.NE.ZERO )
171      $   RCOND = ( ONE / AINVNM ) / ANORM
172 *
173    20 CONTINUE
174       RETURN
175 *
176 *     End of DPOCON
177 *
178       END