1       SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DPOTF2 computes the Cholesky factorization of a real symmetric
 20 *  positive definite matrix A.
 21 *
 22 *  The factorization has the form
 23 *     A = U**T * U ,  if UPLO = 'U', or
 24 *     A = L  * L**T,  if UPLO = 'L',
 25 *  where U is an upper triangular matrix and L is lower triangular.
 26 *
 27 *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          Specifies whether the upper or lower triangular part of the
 34 *          symmetric matrix A is stored.
 35 *          = 'U':  Upper triangular
 36 *          = 'L':  Lower triangular
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 42 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 43 *          n by n upper triangular part of A contains the upper
 44 *          triangular part of the matrix A, and the strictly lower
 45 *          triangular part of A is not referenced.  If UPLO = 'L', the
 46 *          leading n by n lower triangular part of A contains the lower
 47 *          triangular part of the matrix A, and the strictly upper
 48 *          triangular part of A is not referenced.
 49 *
 50 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 51 *          factorization A = U**T *U  or A = L*L**T.
 52 *
 53 *  LDA     (input) INTEGER
 54 *          The leading dimension of the array A.  LDA >= max(1,N).
 55 *
 56 *  INFO    (output) INTEGER
 57 *          = 0: successful exit
 58 *          < 0: if INFO = -k, the k-th argument had an illegal value
 59 *          > 0: if INFO = k, the leading minor of order k is not
 60 *               positive definite, and the factorization could not be
 61 *               completed.
 62 *
 63 *  =====================================================================
 64 *
 65 *     .. Parameters ..
 66       DOUBLE PRECISION   ONE, ZERO
 67       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 68 *     ..
 69 *     .. Local Scalars ..
 70       LOGICAL            UPPER
 71       INTEGER            J
 72       DOUBLE PRECISION   AJJ
 73 *     ..
 74 *     .. External Functions ..
 75       LOGICAL            LSAME, DISNAN
 76       DOUBLE PRECISION   DDOT
 77       EXTERNAL           LSAME, DDOT, DISNAN
 78 *     ..
 79 *     .. External Subroutines ..
 80       EXTERNAL           DGEMV, DSCAL, XERBLA
 81 *     ..
 82 *     .. Intrinsic Functions ..
 83       INTRINSIC          MAXSQRT
 84 *     ..
 85 *     .. Executable Statements ..
 86 *
 87 *     Test the input parameters.
 88 *
 89       INFO = 0
 90       UPPER = LSAME( UPLO, 'U' )
 91       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 92          INFO = -1
 93       ELSE IF( N.LT.0 ) THEN
 94          INFO = -2
 95       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 96          INFO = -4
 97       END IF
 98       IF( INFO.NE.0 ) THEN
 99          CALL XERBLA( 'DPOTF2'-INFO )
100          RETURN
101       END IF
102 *
103 *     Quick return if possible
104 *
105       IF( N.EQ.0 )
106      $   RETURN
107 *
108       IF( UPPER ) THEN
109 *
110 *        Compute the Cholesky factorization A = U**T *U.
111 *
112          DO 10 J = 1, N
113 *
114 *           Compute U(J,J) and test for non-positive-definiteness.
115 *
116             AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
117             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
118                A( J, J ) = AJJ
119                GO TO 30
120             END IF
121             AJJ = SQRT( AJJ )
122             A( J, J ) = AJJ
123 *
124 *           Compute elements J+1:N of row J.
125 *
126             IF( J.LT.N ) THEN
127                CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
128      $                     LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
129                CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
130             END IF
131    10    CONTINUE
132       ELSE
133 *
134 *        Compute the Cholesky factorization A = L*L**T.
135 *
136          DO 20 J = 1, N
137 *
138 *           Compute L(J,J) and test for non-positive-definiteness.
139 *
140             AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
141      $            LDA )
142             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
143                A( J, J ) = AJJ
144                GO TO 30
145             END IF
146             AJJ = SQRT( AJJ )
147             A( J, J ) = AJJ
148 *
149 *           Compute elements J+1:N of column J.
150 *
151             IF( J.LT.N ) THEN
152                CALL DGEMV( 'No transpose', N-J, J-1-ONE, A( J+11 ),
153      $                     LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
154                CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
155             END IF
156    20    CONTINUE
157       END IF
158       GO TO 40
159 *
160    30 CONTINUE
161       INFO = J
162 *
163    40 CONTINUE
164       RETURN
165 *
166 *     End of DPOTF2
167 *
168       END