1       SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DPOTRF computes the Cholesky factorization of a real symmetric
 20 *  positive definite matrix A.
 21 *
 22 *  The factorization has the form
 23 *     A = U**T * U,  if UPLO = 'U', or
 24 *     A = L  * L**T,  if UPLO = 'L',
 25 *  where U is an upper triangular matrix and L is lower triangular.
 26 *
 27 *  This is the block version of the algorithm, calling Level 3 BLAS.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangle of A is stored;
 34 *          = 'L':  Lower triangle of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 40 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 41 *          N-by-N upper triangular part of A contains the upper
 42 *          triangular part of the matrix A, and the strictly lower
 43 *          triangular part of A is not referenced.  If UPLO = 'L', the
 44 *          leading N-by-N lower triangular part of A contains the lower
 45 *          triangular part of the matrix A, and the strictly upper
 46 *          triangular part of A is not referenced.
 47 *
 48 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 49 *          factorization A = U**T*U or A = L*L**T.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0:  successful exit
 56 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 57 *          > 0:  if INFO = i, the leading minor of order i is not
 58 *                positive definite, and the factorization could not be
 59 *                completed.
 60 *
 61 *  =====================================================================
 62 *
 63 *     .. Parameters ..
 64       DOUBLE PRECISION   ONE
 65       PARAMETER          ( ONE = 1.0D+0 )
 66 *     ..
 67 *     .. Local Scalars ..
 68       LOGICAL            UPPER
 69       INTEGER            J, JB, NB
 70 *     ..
 71 *     .. External Functions ..
 72       LOGICAL            LSAME
 73       INTEGER            ILAENV
 74       EXTERNAL           LSAME, ILAENV
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          MAXMIN
 81 *     ..
 82 *     .. Executable Statements ..
 83 *
 84 *     Test the input parameters.
 85 *
 86       INFO = 0
 87       UPPER = LSAME( UPLO, 'U' )
 88       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 89          INFO = -1
 90       ELSE IF( N.LT.0 ) THEN
 91          INFO = -2
 92       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 93          INFO = -4
 94       END IF
 95       IF( INFO.NE.0 ) THEN
 96          CALL XERBLA( 'DPOTRF'-INFO )
 97          RETURN
 98       END IF
 99 *
100 *     Quick return if possible
101 *
102       IF( N.EQ.0 )
103      $   RETURN
104 *
105 *     Determine the block size for this environment.
106 *
107       NB = ILAENV( 1'DPOTRF', UPLO, N, -1-1-1 )
108       IF( NB.LE.1 .OR. NB.GE.N ) THEN
109 *
110 *        Use unblocked code.
111 *
112          CALL DPOTF2( UPLO, N, A, LDA, INFO )
113       ELSE
114 *
115 *        Use blocked code.
116 *
117          IF( UPPER ) THEN
118 *
119 *           Compute the Cholesky factorization A = U**T*U.
120 *
121             DO 10 J = 1, N, NB
122 *
123 *              Update and factorize the current diagonal block and test
124 *              for non-positive-definiteness.
125 *
126                JB = MIN( NB, N-J+1 )
127                CALL DSYRK( 'Upper''Transpose', JB, J-1-ONE,
128      $                     A( 1, J ), LDA, ONE, A( J, J ), LDA )
129                CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
130                IF( INFO.NE.0 )
131      $            GO TO 30
132                IF( J+JB.LE.N ) THEN
133 *
134 *                 Compute the current block row.
135 *
136                   CALL DGEMM( 'Transpose''No transpose', JB, N-J-JB+1,
137      $                        J-1-ONE, A( 1, J ), LDA, A( 1, J+JB ),
138      $                        LDA, ONE, A( J, J+JB ), LDA )
139                   CALL DTRSM( 'Left''Upper''Transpose''Non-unit',
140      $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
141      $                        A( J, J+JB ), LDA )
142                END IF
143    10       CONTINUE
144 *
145          ELSE
146 *
147 *           Compute the Cholesky factorization A = L*L**T.
148 *
149             DO 20 J = 1, N, NB
150 *
151 *              Update and factorize the current diagonal block and test
152 *              for non-positive-definiteness.
153 *
154                JB = MIN( NB, N-J+1 )
155                CALL DSYRK( 'Lower''No transpose', JB, J-1-ONE,
156      $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
157                CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
158                IF( INFO.NE.0 )
159      $            GO TO 30
160                IF( J+JB.LE.N ) THEN
161 *
162 *                 Compute the current block column.
163 *
164                   CALL DGEMM( 'No transpose''Transpose', N-J-JB+1, JB,
165      $                        J-1-ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
166      $                        LDA, ONE, A( J+JB, J ), LDA )
167                   CALL DTRSM( 'Right''Lower''Transpose''Non-unit',
168      $                        N-J-JB+1, JB, ONE, A( J, J ), LDA,
169      $                        A( J+JB, J ), LDA )
170                END IF
171    20       CONTINUE
172          END IF
173       END IF
174       GO TO 40
175 *
176    30 CONTINUE
177       INFO = INFO + J - 1
178 *
179    40 CONTINUE
180       RETURN
181 *
182 *     End of DPOTRF
183 *
184       END