1       SUBROUTINE DPPCON( UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          UPLO
 12       INTEGER            INFO, N
 13       DOUBLE PRECISION   ANORM, RCOND
 14 *     ..
 15 *     .. Array Arguments ..
 16       INTEGER            IWORK( * )
 17       DOUBLE PRECISION   AP( * ), WORK( * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  DPPCON estimates the reciprocal of the condition number (in the
 24 *  1-norm) of a real symmetric positive definite packed matrix using
 25 *  the Cholesky factorization A = U**T*U or A = L*L**T computed by
 26 *  DPPTRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  UPLO    (input) CHARACTER*1
 35 *          = 'U':  Upper triangle of A is stored;
 36 *          = 'L':  Lower triangle of A is stored.
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 42 *          The triangular factor U or L from the Cholesky factorization
 43 *          A = U**T*U or A = L*L**T, packed columnwise in a linear
 44 *          array.  The j-th column of U or L is stored in the array AP
 45 *          as follows:
 46 *          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 47 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
 48 *
 49 *  ANORM   (input) DOUBLE PRECISION
 50 *          The 1-norm (or infinity-norm) of the symmetric matrix A.
 51 *
 52 *  RCOND   (output) DOUBLE PRECISION
 53 *          The reciprocal of the condition number of the matrix A,
 54 *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 55 *          estimate of the 1-norm of inv(A) computed in this routine.
 56 *
 57 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 58 *
 59 *  IWORK   (workspace) INTEGER array, dimension (N)
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0:  successful exit
 63 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 64 *
 65 *  =====================================================================
 66 *
 67 *     .. Parameters ..
 68       DOUBLE PRECISION   ONE, ZERO
 69       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 70 *     ..
 71 *     .. Local Scalars ..
 72       LOGICAL            UPPER
 73       CHARACTER          NORMIN
 74       INTEGER            IX, KASE
 75       DOUBLE PRECISION   AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
 76 *     ..
 77 *     .. Local Arrays ..
 78       INTEGER            ISAVE( 3 )
 79 *     ..
 80 *     .. External Functions ..
 81       LOGICAL            LSAME
 82       INTEGER            IDAMAX
 83       DOUBLE PRECISION   DLAMCH
 84       EXTERNAL           LSAME, IDAMAX, DLAMCH
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           DLACN2, DLATPS, DRSCL, XERBLA
 88 *     ..
 89 *     .. Intrinsic Functions ..
 90       INTRINSIC          ABS
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94 *     Test the input parameters.
 95 *
 96       INFO = 0
 97       UPPER = LSAME( UPLO, 'U' )
 98       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 99          INFO = -1
100       ELSE IF( N.LT.0 ) THEN
101          INFO = -2
102       ELSE IF( ANORM.LT.ZERO ) THEN
103          INFO = -4
104       END IF
105       IF( INFO.NE.0 ) THEN
106          CALL XERBLA( 'DPPCON'-INFO )
107          RETURN
108       END IF
109 *
110 *     Quick return if possible
111 *
112       RCOND = ZERO
113       IF( N.EQ.0 ) THEN
114          RCOND = ONE
115          RETURN
116       ELSE IF( ANORM.EQ.ZERO ) THEN
117          RETURN
118       END IF
119 *
120       SMLNUM = DLAMCH( 'Safe minimum' )
121 *
122 *     Estimate the 1-norm of the inverse.
123 *
124       KASE = 0
125       NORMIN = 'N'
126    10 CONTINUE
127       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
128       IF( KASE.NE.0 ) THEN
129          IF( UPPER ) THEN
130 *
131 *           Multiply by inv(U**T).
132 *
133             CALL DLATPS( 'Upper''Transpose''Non-unit', NORMIN, N,
134      $                   AP, WORK, SCALEL, WORK( 2*N+1 ), INFO )
135             NORMIN = 'Y'
136 *
137 *           Multiply by inv(U).
138 *
139             CALL DLATPS( 'Upper''No transpose''Non-unit', NORMIN, N,
140      $                   AP, WORK, SCALEU, WORK( 2*N+1 ), INFO )
141          ELSE
142 *
143 *           Multiply by inv(L).
144 *
145             CALL DLATPS( 'Lower''No transpose''Non-unit', NORMIN, N,
146      $                   AP, WORK, SCALEL, WORK( 2*N+1 ), INFO )
147             NORMIN = 'Y'
148 *
149 *           Multiply by inv(L**T).
150 *
151             CALL DLATPS( 'Lower''Transpose''Non-unit', NORMIN, N,
152      $                   AP, WORK, SCALEU, WORK( 2*N+1 ), INFO )
153          END IF
154 *
155 *        Multiply by 1/SCALE if doing so will not cause overflow.
156 *
157          SCALE = SCALEL*SCALEU
158          IFSCALE.NE.ONE ) THEN
159             IX = IDAMAX( N, WORK, 1 )
160             IFSCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
161      $         GO TO 20
162             CALL DRSCL( N, SCALE, WORK, 1 )
163          END IF
164          GO TO 10
165       END IF
166 *
167 *     Compute the estimate of the reciprocal condition number.
168 *
169       IF( AINVNM.NE.ZERO )
170      $   RCOND = ( ONE / AINVNM ) / ANORM
171 *
172    20 CONTINUE
173       RETURN
174 *
175 *     End of DPPCON
176 *
177       END