1       SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
 2 *
 3 *  -- LAPACK routine (version 3.3.1) --
 4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 6 *  -- April 2011                                                      --
 7 *
 8 *     .. Scalar Arguments ..
 9       INTEGER            LDB, N, NRHS
10 *     ..
11 *     .. Array Arguments ..
12       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * )
13 *     ..
14 *
15 *  Purpose
16 *  =======
17 *
18 *  DPTTS2 solves a tridiagonal system of the form
19 *     A * X = B
20 *  using the L*D*L**T factorization of A computed by DPTTRF.  D is a
21 *  diagonal matrix specified in the vector D, L is a unit bidiagonal
22 *  matrix whose subdiagonal is specified in the vector E, and X and B
23 *  are N by NRHS matrices.
24 *
25 *  Arguments
26 *  =========
27 *
28 *  N       (input) INTEGER
29 *          The order of the tridiagonal matrix A.  N >= 0.
30 *
31 *  NRHS    (input) INTEGER
32 *          The number of right hand sides, i.e., the number of columns
33 *          of the matrix B.  NRHS >= 0.
34 *
35 *  D       (input) DOUBLE PRECISION array, dimension (N)
36 *          The n diagonal elements of the diagonal matrix D from the
37 *          L*D*L**T factorization of A.
38 *
39 *  E       (input) DOUBLE PRECISION array, dimension (N-1)
40 *          The (n-1) subdiagonal elements of the unit bidiagonal factor
41 *          L from the L*D*L**T factorization of A.  E can also be regarded
42 *          as the superdiagonal of the unit bidiagonal factor U from the
43 *          factorization A = U**T*D*U.
44 *
45 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
46 *          On entry, the right hand side vectors B for the system of
47 *          linear equations.
48 *          On exit, the solution vectors, X.
49 *
50 *  LDB     (input) INTEGER
51 *          The leading dimension of the array B.  LDB >= max(1,N).
52 *
53 *  =====================================================================
54 *
55 *     .. Local Scalars ..
56       INTEGER            I, J
57 *     ..
58 *     .. External Subroutines ..
59       EXTERNAL           DSCAL
60 *     ..
61 *     .. Executable Statements ..
62 *
63 *     Quick return if possible
64 *
65       IF( N.LE.1 ) THEN
66          IF( N.EQ.1 )
67      $      CALL DSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
68          RETURN
69       END IF
70 *
71 *     Solve A * X = B using the factorization A = L*D*L**T,
72 *     overwriting each right hand side vector with its solution.
73 *
74       DO 30 J = 1, NRHS
75 *
76 *           Solve L * x = b.
77 *
78          DO 10 I = 2, N
79             B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
80    10    CONTINUE
81 *
82 *           Solve D * L**T * x = b.
83 *
84          B( N, J ) = B( N, J ) / D( N )
85          DO 20 I = N - 11-1
86             B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
87    20    CONTINUE
88    30 CONTINUE
89 *
90       RETURN
91 *
92 *     End of DPTTS2
93 *
94       END