1       SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
  2      $                   LWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
 22 *  a real symmetric band matrix A. If eigenvectors are desired, it uses
 23 *  a divide and conquer algorithm.
 24 *
 25 *  The divide and conquer algorithm makes very mild assumptions about
 26 *  floating point arithmetic. It will work on machines with a guard
 27 *  digit in add/subtract, or on those binary machines without guard
 28 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 29 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 30 *  without guard digits, but we know of none.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  JOBZ    (input) CHARACTER*1
 36 *          = 'N':  Compute eigenvalues only;
 37 *          = 'V':  Compute eigenvalues and eigenvectors.
 38 *
 39 *  UPLO    (input) CHARACTER*1
 40 *          = 'U':  Upper triangle of A is stored;
 41 *          = 'L':  Lower triangle of A is stored.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrix A.  N >= 0.
 45 *
 46 *  KD      (input) INTEGER
 47 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 48 *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 49 *
 50 *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
 51 *          On entry, the upper or lower triangle of the symmetric band
 52 *          matrix A, stored in the first KD+1 rows of the array.  The
 53 *          j-th column of A is stored in the j-th column of the array AB
 54 *          as follows:
 55 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 56 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 57 *
 58 *          On exit, AB is overwritten by values generated during the
 59 *          reduction to tridiagonal form.  If UPLO = 'U', the first
 60 *          superdiagonal and the diagonal of the tridiagonal matrix T
 61 *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
 62 *          the diagonal and first subdiagonal of T are returned in the
 63 *          first two rows of AB.
 64 *
 65 *  LDAB    (input) INTEGER
 66 *          The leading dimension of the array AB.  LDAB >= KD + 1.
 67 *
 68 *  W       (output) DOUBLE PRECISION array, dimension (N)
 69 *          If INFO = 0, the eigenvalues in ascending order.
 70 *
 71 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 72 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 73 *          eigenvectors of the matrix A, with the i-th column of Z
 74 *          holding the eigenvector associated with W(i).
 75 *          If JOBZ = 'N', then Z is not referenced.
 76 *
 77 *  LDZ     (input) INTEGER
 78 *          The leading dimension of the array Z.  LDZ >= 1, and if
 79 *          JOBZ = 'V', LDZ >= max(1,N).
 80 *
 81 *  WORK    (workspace/output) DOUBLE PRECISION array,
 82 *                                         dimension (LWORK)
 83 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 84 *
 85 *  LWORK   (input) INTEGER
 86 *          The dimension of the array WORK.
 87 *          IF N <= 1,                LWORK must be at least 1.
 88 *          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
 89 *          If JOBZ  = 'V' and N > 2, LWORK must be at least
 90 *                         ( 1 + 5*N + 2*N**2 ).
 91 *
 92 *          If LWORK = -1, then a workspace query is assumed; the routine
 93 *          only calculates the optimal sizes of the WORK and IWORK
 94 *          arrays, returns these values as the first entries of the WORK
 95 *          and IWORK arrays, and no error message related to LWORK or
 96 *          LIWORK is issued by XERBLA.
 97 *
 98 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
 99 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
100 *
101 *  LIWORK  (input) INTEGER
102 *          The dimension of the array LIWORK.
103 *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
104 *          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
105 *
106 *          If LIWORK = -1, then a workspace query is assumed; the
107 *          routine only calculates the optimal sizes of the WORK and
108 *          IWORK arrays, returns these values as the first entries of
109 *          the WORK and IWORK arrays, and no error message related to
110 *          LWORK or LIWORK is issued by XERBLA.
111 *
112 *  INFO    (output) INTEGER
113 *          = 0:  successful exit
114 *          < 0:  if INFO = -i, the i-th argument had an illegal value
115 *          > 0:  if INFO = i, the algorithm failed to converge; i
116 *                off-diagonal elements of an intermediate tridiagonal
117 *                form did not converge to zero.
118 *
119 *  =====================================================================
120 *
121 *     .. Parameters ..
122       DOUBLE PRECISION   ZERO, ONE
123       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
124 *     ..
125 *     .. Local Scalars ..
126       LOGICAL            LOWER, LQUERY, WANTZ
127       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
128      $                   LLWRK2, LWMIN
129       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
130      $                   SMLNUM
131 *     ..
132 *     .. External Functions ..
133       LOGICAL            LSAME
134       DOUBLE PRECISION   DLAMCH, DLANSB
135       EXTERNAL           LSAME, DLAMCH, DLANSB
136 *     ..
137 *     .. External Subroutines ..
138       EXTERNAL           DGEMM, DLACPY, DLASCL, DSBTRD, DSCAL, DSTEDC,
139      $                   DSTERF, XERBLA
140 *     ..
141 *     .. Intrinsic Functions ..
142       INTRINSIC          SQRT
143 *     ..
144 *     .. Executable Statements ..
145 *
146 *     Test the input parameters.
147 *
148       WANTZ = LSAME( JOBZ, 'V' )
149       LOWER = LSAME( UPLO, 'L' )
150       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
151 *
152       INFO = 0
153       IF( N.LE.1 ) THEN
154          LIWMIN = 1
155          LWMIN = 1
156       ELSE
157          IF( WANTZ ) THEN
158             LIWMIN = 3 + 5*N
159             LWMIN = 1 + 5*+ 2*N**2
160          ELSE
161             LIWMIN = 1
162             LWMIN = 2*N
163          END IF
164       END IF
165       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
166          INFO = -1
167       ELSE IF.NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
168          INFO = -2
169       ELSE IF( N.LT.0 ) THEN
170          INFO = -3
171       ELSE IF( KD.LT.0 ) THEN
172          INFO = -4
173       ELSE IF( LDAB.LT.KD+1 ) THEN
174          INFO = -6
175       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
176          INFO = -9
177       END IF
178 *
179       IF( INFO.EQ.0 ) THEN
180          WORK( 1 ) = LWMIN
181          IWORK( 1 ) = LIWMIN
182 *
183          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
184             INFO = -11
185          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
186             INFO = -13
187          END IF
188       END IF
189 *
190       IF( INFO.NE.0 ) THEN
191          CALL XERBLA( 'DSBEVD'-INFO )
192          RETURN
193       ELSE IF( LQUERY ) THEN
194          RETURN
195       END IF
196 *
197 *     Quick return if possible
198 *
199       IF( N.EQ.0 )
200      $   RETURN
201 *
202       IF( N.EQ.1 ) THEN
203          W( 1 ) = AB( 11 )
204          IF( WANTZ )
205      $      Z( 11 ) = ONE
206          RETURN
207       END IF
208 *
209 *     Get machine constants.
210 *
211       SAFMIN = DLAMCH( 'Safe minimum' )
212       EPS = DLAMCH( 'Precision' )
213       SMLNUM = SAFMIN / EPS
214       BIGNUM = ONE / SMLNUM
215       RMIN = SQRT( SMLNUM )
216       RMAX = SQRT( BIGNUM )
217 *
218 *     Scale matrix to allowable range, if necessary.
219 *
220       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
221       ISCALE = 0
222       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
223          ISCALE = 1
224          SIGMA = RMIN / ANRM
225       ELSE IF( ANRM.GT.RMAX ) THEN
226          ISCALE = 1
227          SIGMA = RMAX / ANRM
228       END IF
229       IF( ISCALE.EQ.1 ) THEN
230          IF( LOWER ) THEN
231             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
232          ELSE
233             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
234          END IF
235       END IF
236 *
237 *     Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
238 *
239       INDE = 1
240       INDWRK = INDE + N
241       INDWK2 = INDWRK + N*N
242       LLWRK2 = LWORK - INDWK2 + 1
243       CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
244      $             WORK( INDWRK ), IINFO )
245 *
246 *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEDC.
247 *
248       IF.NOT.WANTZ ) THEN
249          CALL DSTERF( N, W, WORK( INDE ), INFO )
250       ELSE
251          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
252      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
253          CALL DGEMM( 'N''N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
254      $               ZERO, WORK( INDWK2 ), N )
255          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
256       END IF
257 *
258 *     If matrix was scaled, then rescale eigenvalues appropriately.
259 *
260       IF( ISCALE.EQ.1 )
261      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
262 *
263       WORK( 1 ) = LWMIN
264       IWORK( 1 ) = LIWMIN
265       RETURN
266 *
267 *     End of DSBEVD
268 *
269       END