1       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
  2      $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
 16      $                   WORK( * ), Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
 23 *  of a real generalized symmetric-definite banded eigenproblem, of the
 24 *  form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
 25 *  banded, and B is also positive definite.  If eigenvectors are
 26 *  desired, it uses a divide and conquer algorithm.
 27 *
 28 *  The divide and conquer algorithm makes very mild assumptions about
 29 *  floating point arithmetic. It will work on machines with a guard
 30 *  digit in add/subtract, or on those binary machines without guard
 31 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 32 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 33 *  without guard digits, but we know of none.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  JOBZ    (input) CHARACTER*1
 39 *          = 'N':  Compute eigenvalues only;
 40 *          = 'V':  Compute eigenvalues and eigenvectors.
 41 *
 42 *  UPLO    (input) CHARACTER*1
 43 *          = 'U':  Upper triangles of A and B are stored;
 44 *          = 'L':  Lower triangles of A and B are stored.
 45 *
 46 *  N       (input) INTEGER
 47 *          The order of the matrices A and B.  N >= 0.
 48 *
 49 *  KA      (input) INTEGER
 50 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 51 *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
 52 *
 53 *  KB      (input) INTEGER
 54 *          The number of superdiagonals of the matrix B if UPLO = 'U',
 55 *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
 56 *
 57 *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
 58 *          On entry, the upper or lower triangle of the symmetric band
 59 *          matrix A, stored in the first ka+1 rows of the array.  The
 60 *          j-th column of A is stored in the j-th column of the array AB
 61 *          as follows:
 62 *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 63 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 64 *
 65 *          On exit, the contents of AB are destroyed.
 66 *
 67 *  LDAB    (input) INTEGER
 68 *          The leading dimension of the array AB.  LDAB >= KA+1.
 69 *
 70 *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
 71 *          On entry, the upper or lower triangle of the symmetric band
 72 *          matrix B, stored in the first kb+1 rows of the array.  The
 73 *          j-th column of B is stored in the j-th column of the array BB
 74 *          as follows:
 75 *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 76 *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 77 *
 78 *          On exit, the factor S from the split Cholesky factorization
 79 *          B = S**T*S, as returned by DPBSTF.
 80 *
 81 *  LDBB    (input) INTEGER
 82 *          The leading dimension of the array BB.  LDBB >= KB+1.
 83 *
 84 *  W       (output) DOUBLE PRECISION array, dimension (N)
 85 *          If INFO = 0, the eigenvalues in ascending order.
 86 *
 87 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 88 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 89 *          eigenvectors, with the i-th column of Z holding the
 90 *          eigenvector associated with W(i).  The eigenvectors are
 91 *          normalized so Z**T*B*Z = I.
 92 *          If JOBZ = 'N', then Z is not referenced.
 93 *
 94 *  LDZ     (input) INTEGER
 95 *          The leading dimension of the array Z.  LDZ >= 1, and if
 96 *          JOBZ = 'V', LDZ >= max(1,N).
 97 *
 98 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 99 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
100 *
101 *  LWORK   (input) INTEGER
102 *          The dimension of the array WORK.
103 *          If N <= 1,               LWORK >= 1.
104 *          If JOBZ = 'N' and N > 1, LWORK >= 3*N.
105 *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
106 *
107 *          If LWORK = -1, then a workspace query is assumed; the routine
108 *          only calculates the optimal sizes of the WORK and IWORK
109 *          arrays, returns these values as the first entries of the WORK
110 *          and IWORK arrays, and no error message related to LWORK or
111 *          LIWORK is issued by XERBLA.
112 *
113 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
114 *          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
115 *
116 *  LIWORK  (input) INTEGER
117 *          The dimension of the array IWORK.
118 *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
119 *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
120 *
121 *          If LIWORK = -1, then a workspace query is assumed; the
122 *          routine only calculates the optimal sizes of the WORK and
123 *          IWORK arrays, returns these values as the first entries of
124 *          the WORK and IWORK arrays, and no error message related to
125 *          LWORK or LIWORK is issued by XERBLA.
126 *
127 *  INFO    (output) INTEGER
128 *          = 0:  successful exit
129 *          < 0:  if INFO = -i, the i-th argument had an illegal value
130 *          > 0:  if INFO = i, and i is:
131 *             <= N:  the algorithm failed to converge:
132 *                    i off-diagonal elements of an intermediate
133 *                    tridiagonal form did not converge to zero;
134 *             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
135 *                    returned INFO = i: B is not positive definite.
136 *                    The factorization of B could not be completed and
137 *                    no eigenvalues or eigenvectors were computed.
138 *
139 *  Further Details
140 *  ===============
141 *
142 *  Based on contributions by
143 *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
144 *
145 *  =====================================================================
146 *
147 *     .. Parameters ..
148       DOUBLE PRECISION   ONE, ZERO
149       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
150 *     ..
151 *     .. Local Scalars ..
152       LOGICAL            LQUERY, UPPER, WANTZ
153       CHARACTER          VECT
154       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
155      $                   LWMIN
156 *     ..
157 *     .. External Functions ..
158       LOGICAL            LSAME
159       EXTERNAL           LSAME
160 *     ..
161 *     .. External Subroutines ..
162       EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
163      $                   DSTERF, XERBLA
164 *     ..
165 *     .. Executable Statements ..
166 *
167 *     Test the input parameters.
168 *
169       WANTZ = LSAME( JOBZ, 'V' )
170       UPPER = LSAME( UPLO, 'U' )
171       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
172 *
173       INFO = 0
174       IF( N.LE.1 ) THEN
175          LIWMIN = 1
176          LWMIN = 1
177       ELSE IF( WANTZ ) THEN
178          LIWMIN = 3 + 5*N
179          LWMIN = 1 + 5*+ 2*N**2
180       ELSE
181          LIWMIN = 1
182          LWMIN = 2*N
183       END IF
184 *
185       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
186          INFO = -1
187       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
188          INFO = -2
189       ELSE IF( N.LT.0 ) THEN
190          INFO = -3
191       ELSE IF( KA.LT.0 ) THEN
192          INFO = -4
193       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
194          INFO = -5
195       ELSE IF( LDAB.LT.KA+1 ) THEN
196          INFO = -7
197       ELSE IF( LDBB.LT.KB+1 ) THEN
198          INFO = -9
199       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
200          INFO = -12
201       END IF
202 *
203       IF( INFO.EQ.0 ) THEN
204          WORK( 1 ) = LWMIN
205          IWORK( 1 ) = LIWMIN
206 *
207          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
208             INFO = -14
209          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
210             INFO = -16
211          END IF
212       END IF
213 *
214       IF( INFO.NE.0 ) THEN
215          CALL XERBLA( 'DSBGVD'-INFO )
216          RETURN
217       ELSE IF( LQUERY ) THEN
218          RETURN
219       END IF
220 *
221 *     Quick return if possible
222 *
223       IF( N.EQ.0 )
224      $   RETURN
225 *
226 *     Form a split Cholesky factorization of B.
227 *
228       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
229       IF( INFO.NE.0 ) THEN
230          INFO = N + INFO
231          RETURN
232       END IF
233 *
234 *     Transform problem to standard eigenvalue problem.
235 *
236       INDE = 1
237       INDWRK = INDE + N
238       INDWK2 = INDWRK + N*N
239       LLWRK2 = LWORK - INDWK2 + 1
240       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
241      $             WORK( INDWRK ), IINFO )
242 *
243 *     Reduce to tridiagonal form.
244 *
245       IF( WANTZ ) THEN
246          VECT = 'U'
247       ELSE
248          VECT = 'N'
249       END IF
250       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
251      $             WORK( INDWRK ), IINFO )
252 *
253 *     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
254 *
255       IF.NOT.WANTZ ) THEN
256          CALL DSTERF( N, W, WORK( INDE ), INFO )
257       ELSE
258          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
259      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
260          CALL DGEMM( 'N''N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
261      $               ZERO, WORK( INDWK2 ), N )
262          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
263       END IF
264 *
265       WORK( 1 ) = LWMIN
266       IWORK( 1 ) = LIWMIN
267 *
268       RETURN
269 *
270 *     End of DSBGVD
271 *
272       END