1       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  2      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  3      $                   LDZ, WORK, IWORK, IFAIL, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBZ, RANGE, UPLO
 12       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
 13      $                   N
 14       DOUBLE PRECISION   ABSTOL, VL, VU
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IFAIL( * ), IWORK( * )
 18       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
 19      $                   W( * ), WORK( * ), Z( LDZ, * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  DSBGVX computes selected eigenvalues, and optionally, eigenvectors
 26 *  of a real generalized symmetric-definite banded eigenproblem, of
 27 *  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
 28 *  and banded, and B is also positive definite.  Eigenvalues and
 29 *  eigenvectors can be selected by specifying either all eigenvalues,
 30 *  a range of values or a range of indices for the desired eigenvalues.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  JOBZ    (input) CHARACTER*1
 36 *          = 'N':  Compute eigenvalues only;
 37 *          = 'V':  Compute eigenvalues and eigenvectors.
 38 *
 39 *  RANGE   (input) CHARACTER*1
 40 *          = 'A': all eigenvalues will be found.
 41 *          = 'V': all eigenvalues in the half-open interval (VL,VU]
 42 *                 will be found.
 43 *          = 'I': the IL-th through IU-th eigenvalues will be found.
 44 *
 45 *  UPLO    (input) CHARACTER*1
 46 *          = 'U':  Upper triangles of A and B are stored;
 47 *          = 'L':  Lower triangles of A and B are stored.
 48 *
 49 *  N       (input) INTEGER
 50 *          The order of the matrices A and B.  N >= 0.
 51 *
 52 *  KA      (input) INTEGER
 53 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 54 *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
 55 *
 56 *  KB      (input) INTEGER
 57 *          The number of superdiagonals of the matrix B if UPLO = 'U',
 58 *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
 59 *
 60 *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
 61 *          On entry, the upper or lower triangle of the symmetric band
 62 *          matrix A, stored in the first ka+1 rows of the array.  The
 63 *          j-th column of A is stored in the j-th column of the array AB
 64 *          as follows:
 65 *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 66 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 67 *
 68 *          On exit, the contents of AB are destroyed.
 69 *
 70 *  LDAB    (input) INTEGER
 71 *          The leading dimension of the array AB.  LDAB >= KA+1.
 72 *
 73 *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
 74 *          On entry, the upper or lower triangle of the symmetric band
 75 *          matrix B, stored in the first kb+1 rows of the array.  The
 76 *          j-th column of B is stored in the j-th column of the array BB
 77 *          as follows:
 78 *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 79 *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 80 *
 81 *          On exit, the factor S from the split Cholesky factorization
 82 *          B = S**T*S, as returned by DPBSTF.
 83 *
 84 *  LDBB    (input) INTEGER
 85 *          The leading dimension of the array BB.  LDBB >= KB+1.
 86 *
 87 *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
 88 *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
 89 *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
 90 *          and consequently C to tridiagonal form.
 91 *          If JOBZ = 'N', the array Q is not referenced.
 92 *
 93 *  LDQ     (input) INTEGER
 94 *          The leading dimension of the array Q.  If JOBZ = 'N',
 95 *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
 96 *
 97 *  VL      (input) DOUBLE PRECISION
 98 *  VU      (input) DOUBLE PRECISION
 99 *          If RANGE='V', the lower and upper bounds of the interval to
100 *          be searched for eigenvalues. VL < VU.
101 *          Not referenced if RANGE = 'A' or 'I'.
102 *
103 *  IL      (input) INTEGER
104 *  IU      (input) INTEGER
105 *          If RANGE='I', the indices (in ascending order) of the
106 *          smallest and largest eigenvalues to be returned.
107 *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
108 *          Not referenced if RANGE = 'A' or 'V'.
109 *
110 *  ABSTOL  (input) DOUBLE PRECISION
111 *          The absolute error tolerance for the eigenvalues.
112 *          An approximate eigenvalue is accepted as converged
113 *          when it is determined to lie in an interval [a,b]
114 *          of width less than or equal to
115 *
116 *                  ABSTOL + EPS *   max( |a|,|b| ) ,
117 *
118 *          where EPS is the machine precision.  If ABSTOL is less than
119 *          or equal to zero, then  EPS*|T|  will be used in its place,
120 *          where |T| is the 1-norm of the tridiagonal matrix obtained
121 *          by reducing A to tridiagonal form.
122 *
123 *          Eigenvalues will be computed most accurately when ABSTOL is
124 *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
125 *          If this routine returns with INFO>0, indicating that some
126 *          eigenvectors did not converge, try setting ABSTOL to
127 *          2*DLAMCH('S').
128 *
129 *  M       (output) INTEGER
130 *          The total number of eigenvalues found.  0 <= M <= N.
131 *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
132 *
133 *  W       (output) DOUBLE PRECISION array, dimension (N)
134 *          If INFO = 0, the eigenvalues in ascending order.
135 *
136 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
137 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
138 *          eigenvectors, with the i-th column of Z holding the
139 *          eigenvector associated with W(i).  The eigenvectors are
140 *          normalized so Z**T*B*Z = I.
141 *          If JOBZ = 'N', then Z is not referenced.
142 *
143 *  LDZ     (input) INTEGER
144 *          The leading dimension of the array Z.  LDZ >= 1, and if
145 *          JOBZ = 'V', LDZ >= max(1,N).
146 *
147 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N)
148 *
149 *  IWORK   (workspace/output) INTEGER array, dimension (5*N)
150 *
151 *  IFAIL   (output) INTEGER array, dimension (M)
152 *          If JOBZ = 'V', then if INFO = 0, the first M elements of
153 *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
154 *          indices of the eigenvalues that failed to converge.
155 *          If JOBZ = 'N', then IFAIL is not referenced.
156 *
157 *  INFO    (output) INTEGER
158 *          = 0 : successful exit
159 *          < 0 : if INFO = -i, the i-th argument had an illegal value
160 *          <= N: if INFO = i, then i eigenvectors failed to converge.
161 *                  Their indices are stored in IFAIL.
162 *          > N : DPBSTF returned an error code; i.e.,
163 *                if INFO = N + i, for 1 <= i <= N, then the leading
164 *                minor of order i of B is not positive definite.
165 *                The factorization of B could not be completed and
166 *                no eigenvalues or eigenvectors were computed.
167 *
168 *  Further Details
169 *  ===============
170 *
171 *  Based on contributions by
172 *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
173 *
174 *  =====================================================================
175 *
176 *     .. Parameters ..
177       DOUBLE PRECISION   ZERO, ONE
178       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
179 *     ..
180 *     .. Local Scalars ..
181       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
182       CHARACTER          ORDER, VECT
183       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
184      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
185       DOUBLE PRECISION   TMP1
186 *     ..
187 *     .. External Functions ..
188       LOGICAL            LSAME
189       EXTERNAL           LSAME
190 *     ..
191 *     .. External Subroutines ..
192       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
193      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
194 *     ..
195 *     .. Intrinsic Functions ..
196       INTRINSIC          MIN
197 *     ..
198 *     .. Executable Statements ..
199 *
200 *     Test the input parameters.
201 *
202       WANTZ = LSAME( JOBZ, 'V' )
203       UPPER = LSAME( UPLO, 'U' )
204       ALLEIG = LSAME( RANGE'A' )
205       VALEIG = LSAME( RANGE'V' )
206       INDEIG = LSAME( RANGE'I' )
207 *
208       INFO = 0
209       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
210          INFO = -1
211       ELSE IF.NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
212          INFO = -2
213       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
214          INFO = -3
215       ELSE IF( N.LT.0 ) THEN
216          INFO = -4
217       ELSE IF( KA.LT.0 ) THEN
218          INFO = -5
219       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
220          INFO = -6
221       ELSE IF( LDAB.LT.KA+1 ) THEN
222          INFO = -8
223       ELSE IF( LDBB.LT.KB+1 ) THEN
224          INFO = -10
225       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
226          INFO = -12
227       ELSE
228          IF( VALEIG ) THEN
229             IF( N.GT.0 .AND. VU.LE.VL )
230      $         INFO = -14
231          ELSE IF( INDEIG ) THEN
232             IF( IL.LT.1 .OR. IL.GT.MAX1, N ) ) THEN
233                INFO = -15
234             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
235                INFO = -16
236             END IF
237          END IF
238       END IF
239       IF( INFO.EQ.0THEN
240          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
241             INFO = -21
242          END IF
243       END IF
244 *
245       IF( INFO.NE.0 ) THEN
246          CALL XERBLA( 'DSBGVX'-INFO )
247          RETURN
248       END IF
249 *
250 *     Quick return if possible
251 *
252       M = 0
253       IF( N.EQ.0 )
254      $   RETURN
255 *
256 *     Form a split Cholesky factorization of B.
257 *
258       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
259       IF( INFO.NE.0 ) THEN
260          INFO = N + INFO
261          RETURN
262       END IF
263 *
264 *     Transform problem to standard eigenvalue problem.
265 *
266       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
267      $             WORK, IINFO )
268 *
269 *     Reduce symmetric band matrix to tridiagonal form.
270 *
271       INDD = 1
272       INDE = INDD + N
273       INDWRK = INDE + N
274       IF( WANTZ ) THEN
275          VECT = 'U'
276       ELSE
277          VECT = 'N'
278       END IF
279       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
280      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
281 *
282 *     If all eigenvalues are desired and ABSTOL is less than or equal
283 *     to zero, then call DSTERF or SSTEQR.  If this fails for some
284 *     eigenvalue, then try DSTEBZ.
285 *
286       TEST = .FALSE.
287       IF( INDEIG ) THEN
288          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
289             TEST = .TRUE.
290          END IF
291       END IF
292       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
293          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
294          INDEE = INDWRK + 2*N
295          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
296          IF.NOT.WANTZ ) THEN
297             CALL DSTERF( N, W, WORK( INDEE ), INFO )
298          ELSE
299             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
300             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
301      $                   WORK( INDWRK ), INFO )
302             IF( INFO.EQ.0 ) THEN
303                DO 10 I = 1, N
304                   IFAIL( I ) = 0
305    10          CONTINUE
306             END IF
307          END IF
308          IF( INFO.EQ.0 ) THEN
309             M = N
310             GO TO 30
311          END IF
312          INFO = 0
313       END IF
314 *
315 *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
316 *     call DSTEIN.
317 *
318       IF( WANTZ ) THEN
319          ORDER = 'B'
320       ELSE
321          ORDER = 'E'
322       END IF
323       INDIBL = 1
324       INDISP = INDIBL + N
325       INDIWO = INDISP + N
326       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
327      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
328      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
329      $             IWORK( INDIWO ), INFO )
330 *
331       IF( WANTZ ) THEN
332          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
333      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
334      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
335 *
336 *        Apply transformation matrix used in reduction to tridiagonal
337 *        form to eigenvectors returned by DSTEIN.
338 *
339          DO 20 J = 1, M
340             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
341             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
342      $                  Z( 1, J ), 1 )
343    20    CONTINUE
344       END IF
345 *
346    30 CONTINUE
347 *
348 *     If eigenvalues are not in order, then sort them, along with
349 *     eigenvectors.
350 *
351       IF( WANTZ ) THEN
352          DO 50 J = 1, M - 1
353             I = 0
354             TMP1 = W( J )
355             DO 40 JJ = J + 1, M
356                IF( W( JJ ).LT.TMP1 ) THEN
357                   I = JJ
358                   TMP1 = W( JJ )
359                END IF
360    40       CONTINUE
361 *
362             IF( I.NE.0 ) THEN
363                ITMP1 = IWORK( INDIBL+I-1 )
364                W( I ) = W( J )
365                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
366                W( J ) = TMP1
367                IWORK( INDIBL+J-1 ) = ITMP1
368                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
369                IF( INFO.NE.0 ) THEN
370                   ITMP1 = IFAIL( I )
371                   IFAIL( I ) = IFAIL( J )
372                   IFAIL( J ) = ITMP1
373                END IF
374             END IF
375    50    CONTINUE
376       END IF
377 *
378       RETURN
379 *
380 *     End of DSBGVX
381 *
382       END