1       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
  2      $                   IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DSPEVD computes all the eigenvalues and, optionally, eigenvectors
 22 *  of a real symmetric matrix A in packed storage. If eigenvectors are
 23 *  desired, it uses a divide and conquer algorithm.
 24 *
 25 *  The divide and conquer algorithm makes very mild assumptions about
 26 *  floating point arithmetic. It will work on machines with a guard
 27 *  digit in add/subtract, or on those binary machines without guard
 28 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 29 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 30 *  without guard digits, but we know of none.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  JOBZ    (input) CHARACTER*1
 36 *          = 'N':  Compute eigenvalues only;
 37 *          = 'V':  Compute eigenvalues and eigenvectors.
 38 *
 39 *  UPLO    (input) CHARACTER*1
 40 *          = 'U':  Upper triangle of A is stored;
 41 *          = 'L':  Lower triangle of A is stored.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrix A.  N >= 0.
 45 *
 46 *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 47 *          On entry, the upper or lower triangle of the symmetric matrix
 48 *          A, packed columnwise in a linear array.  The j-th column of A
 49 *          is stored in the array AP as follows:
 50 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 51 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 52 *
 53 *          On exit, AP is overwritten by values generated during the
 54 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 55 *          and first superdiagonal of the tridiagonal matrix T overwrite
 56 *          the corresponding elements of A, and if UPLO = 'L', the
 57 *          diagonal and first subdiagonal of T overwrite the
 58 *          corresponding elements of A.
 59 *
 60 *  W       (output) DOUBLE PRECISION array, dimension (N)
 61 *          If INFO = 0, the eigenvalues in ascending order.
 62 *
 63 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 64 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 65 *          eigenvectors of the matrix A, with the i-th column of Z
 66 *          holding the eigenvector associated with W(i).
 67 *          If JOBZ = 'N', then Z is not referenced.
 68 *
 69 *  LDZ     (input) INTEGER
 70 *          The leading dimension of the array Z.  LDZ >= 1, and if
 71 *          JOBZ = 'V', LDZ >= max(1,N).
 72 *
 73 *  WORK    (workspace/output) DOUBLE PRECISION array,
 74 *                                         dimension (LWORK)
 75 *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 76 *
 77 *  LWORK   (input) INTEGER
 78 *          The dimension of the array WORK.
 79 *          If N <= 1,               LWORK must be at least 1.
 80 *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
 81 *          If JOBZ = 'V' and N > 1, LWORK must be at least
 82 *                                                 1 + 6*N + N**2.
 83 *
 84 *          If LWORK = -1, then a workspace query is assumed; the routine
 85 *          only calculates the required sizes of the WORK and IWORK
 86 *          arrays, returns these values as the first entries of the WORK
 87 *          and IWORK arrays, and no error message related to LWORK or
 88 *          LIWORK is issued by XERBLA.
 89 *
 90 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
 91 *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
 92 *
 93 *  LIWORK  (input) INTEGER
 94 *          The dimension of the array IWORK.
 95 *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
 96 *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 97 *
 98 *          If LIWORK = -1, then a workspace query is assumed; the
 99 *          routine only calculates the required sizes of the WORK and
100 *          IWORK arrays, returns these values as the first entries of
101 *          the WORK and IWORK arrays, and no error message related to
102 *          LWORK or LIWORK is issued by XERBLA.
103 *
104 *  INFO    (output) INTEGER
105 *          = 0:  successful exit
106 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
107 *          > 0:  if INFO = i, the algorithm failed to converge; i
108 *                off-diagonal elements of an intermediate tridiagonal
109 *                form did not converge to zero.
110 *
111 *  =====================================================================
112 *
113 *     .. Parameters ..
114       DOUBLE PRECISION   ZERO, ONE
115       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
116 *     ..
117 *     .. Local Scalars ..
118       LOGICAL            LQUERY, WANTZ
119       INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
120      $                   LLWORK, LWMIN
121       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
122      $                   SMLNUM
123 *     ..
124 *     .. External Functions ..
125       LOGICAL            LSAME
126       DOUBLE PRECISION   DLAMCH, DLANSP
127       EXTERNAL           LSAME, DLAMCH, DLANSP
128 *     ..
129 *     .. External Subroutines ..
130       EXTERNAL           DOPMTR, DSCAL, DSPTRD, DSTEDC, DSTERF, XERBLA
131 *     ..
132 *     .. Intrinsic Functions ..
133       INTRINSIC          SQRT
134 *     ..
135 *     .. Executable Statements ..
136 *
137 *     Test the input parameters.
138 *
139       WANTZ = LSAME( JOBZ, 'V' )
140       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
141 *
142       INFO = 0
143       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
144          INFO = -1
145       ELSE IF.NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
146      $          THEN
147          INFO = -2
148       ELSE IF( N.LT.0 ) THEN
149          INFO = -3
150       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
151          INFO = -7
152       END IF
153 *
154       IF( INFO.EQ.0 ) THEN
155          IF( N.LE.1 ) THEN
156             LIWMIN = 1
157             LWMIN = 1
158          ELSE
159             IF( WANTZ ) THEN
160                LIWMIN = 3 + 5*N
161                LWMIN = 1 + 6*+ N**2
162             ELSE
163                LIWMIN = 1
164                LWMIN = 2*N
165             END IF
166          END IF
167          IWORK( 1 ) = LIWMIN
168          WORK( 1 ) = LWMIN
169 *
170          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
171             INFO = -9
172          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
173             INFO = -11
174          END IF
175       END IF
176 *
177       IF( INFO.NE.0 ) THEN
178          CALL XERBLA( 'DSPEVD'-INFO )
179          RETURN
180       ELSE IF( LQUERY ) THEN
181          RETURN
182       END IF
183 *
184 *     Quick return if possible
185 *
186       IF( N.EQ.0 )
187      $   RETURN
188 *
189       IF( N.EQ.1 ) THEN
190          W( 1 ) = AP( 1 )
191          IF( WANTZ )
192      $      Z( 11 ) = ONE
193          RETURN
194       END IF
195 *
196 *     Get machine constants.
197 *
198       SAFMIN = DLAMCH( 'Safe minimum' )
199       EPS = DLAMCH( 'Precision' )
200       SMLNUM = SAFMIN / EPS
201       BIGNUM = ONE / SMLNUM
202       RMIN = SQRT( SMLNUM )
203       RMAX = SQRT( BIGNUM )
204 *
205 *     Scale matrix to allowable range, if necessary.
206 *
207       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
208       ISCALE = 0
209       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
210          ISCALE = 1
211          SIGMA = RMIN / ANRM
212       ELSE IF( ANRM.GT.RMAX ) THEN
213          ISCALE = 1
214          SIGMA = RMAX / ANRM
215       END IF
216       IF( ISCALE.EQ.1 ) THEN
217          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
218       END IF
219 *
220 *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
221 *
222       INDE = 1
223       INDTAU = INDE + N
224       CALL DSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
225 *
226 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
227 *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
228 *     tridiagonal matrix, then call DOPMTR to multiply it by the
229 *     Householder transformations represented in AP.
230 *
231       IF.NOT.WANTZ ) THEN
232          CALL DSTERF( N, W, WORK( INDE ), INFO )
233       ELSE
234          INDWRK = INDTAU + N
235          LLWORK = LWORK - INDWRK + 1
236          CALL DSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
237      $                LLWORK, IWORK, LIWORK, INFO )
238          CALL DOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
239      $                WORK( INDWRK ), IINFO )
240       END IF
241 *
242 *     If matrix was scaled, then rescale eigenvalues appropriately.
243 *
244       IF( ISCALE.EQ.1 )
245      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
246 *
247       WORK( 1 ) = LWMIN
248       IWORK( 1 ) = LIWMIN
249       RETURN
250 *
251 *     End of DSPEVD
252 *
253       END