1       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  2      $                   LWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
 16      $                   Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
 23 *  of a real generalized symmetric-definite eigenproblem, of the form
 24 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 25 *  B are assumed to be symmetric, stored in packed format, and B is also
 26 *  positive definite.
 27 *  If eigenvectors are desired, it uses a divide and conquer algorithm.
 28 *
 29 *  The divide and conquer algorithm makes very mild assumptions about
 30 *  floating point arithmetic. It will work on machines with a guard
 31 *  digit in add/subtract, or on those binary machines without guard
 32 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 33 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 34 *  without guard digits, but we know of none.
 35 *
 36 *  Arguments
 37 *  =========
 38 *
 39 *  ITYPE   (input) INTEGER
 40 *          Specifies the problem type to be solved:
 41 *          = 1:  A*x = (lambda)*B*x
 42 *          = 2:  A*B*x = (lambda)*x
 43 *          = 3:  B*A*x = (lambda)*x
 44 *
 45 *  JOBZ    (input) CHARACTER*1
 46 *          = 'N':  Compute eigenvalues only;
 47 *          = 'V':  Compute eigenvalues and eigenvectors.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          = 'U':  Upper triangles of A and B are stored;
 51 *          = 'L':  Lower triangles of A and B are stored.
 52 *
 53 *  N       (input) INTEGER
 54 *          The order of the matrices A and B.  N >= 0.
 55 *
 56 *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 57 *          On entry, the upper or lower triangle of the symmetric matrix
 58 *          A, packed columnwise in a linear array.  The j-th column of A
 59 *          is stored in the array AP as follows:
 60 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 61 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 62 *
 63 *          On exit, the contents of AP are destroyed.
 64 *
 65 *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 66 *          On entry, the upper or lower triangle of the symmetric matrix
 67 *          B, packed columnwise in a linear array.  The j-th column of B
 68 *          is stored in the array BP as follows:
 69 *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 70 *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 71 *
 72 *          On exit, the triangular factor U or L from the Cholesky
 73 *          factorization B = U**T*U or B = L*L**T, in the same storage
 74 *          format as B.
 75 *
 76 *  W       (output) DOUBLE PRECISION array, dimension (N)
 77 *          If INFO = 0, the eigenvalues in ascending order.
 78 *
 79 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 80 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 81 *          eigenvectors.  The eigenvectors are normalized as follows:
 82 *          if ITYPE = 1 or 2, Z**T*B*Z = I;
 83 *          if ITYPE = 3, Z**T*inv(B)*Z = I.
 84 *          If JOBZ = 'N', then Z is not referenced.
 85 *
 86 *  LDZ     (input) INTEGER
 87 *          The leading dimension of the array Z.  LDZ >= 1, and if
 88 *          JOBZ = 'V', LDZ >= max(1,N).
 89 *
 90 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 91 *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 92 *
 93 *  LWORK   (input) INTEGER
 94 *          The dimension of the array WORK.
 95 *          If N <= 1,               LWORK >= 1.
 96 *          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
 97 *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
 98 *
 99 *          If LWORK = -1, then a workspace query is assumed; the routine
100 *          only calculates the required sizes of the WORK and IWORK
101 *          arrays, returns these values as the first entries of the WORK
102 *          and IWORK arrays, and no error message related to LWORK or
103 *          LIWORK is issued by XERBLA.
104 *
105 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
106 *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
107 *
108 *  LIWORK  (input) INTEGER
109 *          The dimension of the array IWORK.
110 *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
111 *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
112 *
113 *          If LIWORK = -1, then a workspace query is assumed; the
114 *          routine only calculates the required sizes of the WORK and
115 *          IWORK arrays, returns these values as the first entries of
116 *          the WORK and IWORK arrays, and no error message related to
117 *          LWORK or LIWORK is issued by XERBLA.
118 *
119 *  INFO    (output) INTEGER
120 *          = 0:  successful exit
121 *          < 0:  if INFO = -i, the i-th argument had an illegal value
122 *          > 0:  DPPTRF or DSPEVD returned an error code:
123 *             <= N:  if INFO = i, DSPEVD failed to converge;
124 *                    i off-diagonal elements of an intermediate
125 *                    tridiagonal form did not converge to zero;
126 *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
127 *                    minor of order i of B is not positive definite.
128 *                    The factorization of B could not be completed and
129 *                    no eigenvalues or eigenvectors were computed.
130 *
131 *  Further Details
132 *  ===============
133 *
134 *  Based on contributions by
135 *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
136 *
137 *  =====================================================================
138 *
139 *     .. Parameters ..
140       DOUBLE PRECISION   TWO
141       PARAMETER          ( TWO = 2.0D+0 )
142 *     ..
143 *     .. Local Scalars ..
144       LOGICAL            LQUERY, UPPER, WANTZ
145       CHARACTER          TRANS
146       INTEGER            J, LIWMIN, LWMIN, NEIG
147 *     ..
148 *     .. External Functions ..
149       LOGICAL            LSAME
150       EXTERNAL           LSAME
151 *     ..
152 *     .. External Subroutines ..
153       EXTERNAL           DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
154 *     ..
155 *     .. Intrinsic Functions ..
156       INTRINSIC          DBLEMAX
157 *     ..
158 *     .. Executable Statements ..
159 *
160 *     Test the input parameters.
161 *
162       WANTZ = LSAME( JOBZ, 'V' )
163       UPPER = LSAME( UPLO, 'U' )
164       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
165 *
166       INFO = 0
167       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
168          INFO = -1
169       ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
170          INFO = -2
171       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
172          INFO = -3
173       ELSE IF( N.LT.0 ) THEN
174          INFO = -4
175       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
176          INFO = -9
177       END IF
178 *
179       IF( INFO.EQ.0 ) THEN
180          IF( N.LE.1 ) THEN
181             LIWMIN = 1
182             LWMIN = 1
183          ELSE
184             IF( WANTZ ) THEN
185                LIWMIN = 3 + 5*N
186                LWMIN = 1 + 6*+ 2*N**2
187             ELSE
188                LIWMIN = 1
189                LWMIN = 2*N
190             END IF
191          END IF
192          WORK( 1 ) = LWMIN
193          IWORK( 1 ) = LIWMIN
194          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
195             INFO = -11
196          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
197             INFO = -13
198          END IF
199       END IF
200 *
201       IF( INFO.NE.0 ) THEN
202          CALL XERBLA( 'DSPGVD'-INFO )
203          RETURN
204       ELSE IF( LQUERY ) THEN
205          RETURN
206       END IF
207 *
208 *     Quick return if possible
209 *
210       IF( N.EQ.0 )
211      $   RETURN
212 *
213 *     Form a Cholesky factorization of BP.
214 *
215       CALL DPPTRF( UPLO, N, BP, INFO )
216       IF( INFO.NE.0 ) THEN
217          INFO = N + INFO
218          RETURN
219       END IF
220 *
221 *     Transform problem to standard eigenvalue problem and solve.
222 *
223       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
224       CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
225      $             LIWORK, INFO )
226       LWMIN = MAXDBLE( LWMIN ), DBLE( WORK( 1 ) ) )
227       LIWMIN = MAXDBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
228 *
229       IF( WANTZ ) THEN
230 *
231 *        Backtransform eigenvectors to the original problem.
232 *
233          NEIG = N
234          IF( INFO.GT.0 )
235      $      NEIG = INFO - 1
236          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
237 *
238 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
239 *           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
240 *
241             IF( UPPER ) THEN
242                TRANS = 'N'
243             ELSE
244                TRANS = 'T'
245             END IF
246 *
247             DO 10 J = 1, NEIG
248                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
249      $                     1 )
250    10       CONTINUE
251 *
252          ELSE IF( ITYPE.EQ.3 ) THEN
253 *
254 *           For B*A*x=(lambda)*x;
255 *           backtransform eigenvectors: x = L*y or U**T *y
256 *
257             IF( UPPER ) THEN
258                TRANS = 'T'
259             ELSE
260                TRANS = 'N'
261             END IF
262 *
263             DO 20 J = 1, NEIG
264                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
265      $                     1 )
266    20       CONTINUE
267          END IF
268       END IF
269 *
270       WORK( 1 ) = LWMIN
271       IWORK( 1 ) = LIWMIN
272 *
273       RETURN
274 *
275 *     End of DSPGVD
276 *
277       END