1       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       DOUBLE PRECISION   AP( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DSPTRF computes the factorization of a real symmetric matrix A stored
 21 *  in packed format using the Bunch-Kaufman diagonal pivoting method:
 22 *
 23 *     A = U*D*U**T  or  A = L*D*L**T
 24 *
 25 *  where U (or L) is a product of permutation and unit upper (lower)
 26 *  triangular matrices, and D is symmetric and block diagonal with
 27 *  1-by-1 and 2-by-2 diagonal blocks.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangle of A is stored;
 34 *          = 'L':  Lower triangle of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 40 *          On entry, the upper or lower triangle of the symmetric matrix
 41 *          A, packed columnwise in a linear array.  The j-th column of A
 42 *          is stored in the array AP as follows:
 43 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 44 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 45 *
 46 *          On exit, the block diagonal matrix D and the multipliers used
 47 *          to obtain the factor U or L, stored as a packed triangular
 48 *          matrix overwriting A (see below for further details).
 49 *
 50 *  IPIV    (output) INTEGER array, dimension (N)
 51 *          Details of the interchanges and the block structure of D.
 52 *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 53 *          interchanged and D(k,k) is a 1-by-1 diagonal block.
 54 *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
 55 *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 56 *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
 57 *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
 58 *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 59 *
 60 *  INFO    (output) INTEGER
 61 *          = 0: successful exit
 62 *          < 0: if INFO = -i, the i-th argument had an illegal value
 63 *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 64 *               has been completed, but the block diagonal matrix D is
 65 *               exactly singular, and division by zero will occur if it
 66 *               is used to solve a system of equations.
 67 *
 68 *  Further Details
 69 *  ===============
 70 *
 71 *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
 72 *         Company
 73 *
 74 *  If UPLO = 'U', then A = U*D*U**T, where
 75 *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 76 *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 77 *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 78 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 79 *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 80 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 81 *
 82 *             (   I    v    0   )   k-s
 83 *     U(k) =  (   0    I    0   )   s
 84 *             (   0    0    I   )   n-k
 85 *                k-s   s   n-k
 86 *
 87 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 88 *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 89 *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 90 *
 91 *  If UPLO = 'L', then A = L*D*L**T, where
 92 *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 93 *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 94 *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 95 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 96 *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 97 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 98 *
 99 *             (   I    0     0   )  k-1
100 *     L(k) =  (   0    I     0   )  s
101 *             (   0    v     I   )  n-k-s+1
102 *                k-1   s  n-k-s+1
103 *
104 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
105 *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
106 *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
107 *
108 *  =====================================================================
109 *
110 *     .. Parameters ..
111       DOUBLE PRECISION   ZERO, ONE
112       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
113       DOUBLE PRECISION   EIGHT, SEVTEN
114       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
115 *     ..
116 *     .. Local Scalars ..
117       LOGICAL            UPPER
118       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
119      $                   KSTEP, KX, NPP
120       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
121      $                   ROWMAX, T, WK, WKM1, WKP1
122 *     ..
123 *     .. External Functions ..
124       LOGICAL            LSAME
125       INTEGER            IDAMAX
126       EXTERNAL           LSAME, IDAMAX
127 *     ..
128 *     .. External Subroutines ..
129       EXTERNAL           DSCAL, DSPR, DSWAP, XERBLA
130 *     ..
131 *     .. Intrinsic Functions ..
132       INTRINSIC          ABSMAXSQRT
133 *     ..
134 *     .. Executable Statements ..
135 *
136 *     Test the input parameters.
137 *
138       INFO = 0
139       UPPER = LSAME( UPLO, 'U' )
140       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
141          INFO = -1
142       ELSE IF( N.LT.0 ) THEN
143          INFO = -2
144       END IF
145       IF( INFO.NE.0 ) THEN
146          CALL XERBLA( 'DSPTRF'-INFO )
147          RETURN
148       END IF
149 *
150 *     Initialize ALPHA for use in choosing pivot block size.
151 *
152       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
153 *
154       IF( UPPER ) THEN
155 *
156 *        Factorize A as U*D*U**T using the upper triangle of A
157 *
158 *        K is the main loop index, decreasing from N to 1 in steps of
159 *        1 or 2
160 *
161          K = N
162          KC = ( N-1 )*/ 2 + 1
163    10    CONTINUE
164          KNC = KC
165 *
166 *        If K < 1, exit from loop
167 *
168          IF( K.LT.1 )
169      $      GO TO 110
170          KSTEP = 1
171 *
172 *        Determine rows and columns to be interchanged and whether
173 *        a 1-by-1 or 2-by-2 pivot block will be used
174 *
175          ABSAKK = ABS( AP( KC+K-1 ) )
176 *
177 *        IMAX is the row-index of the largest off-diagonal element in
178 *        column K, and COLMAX is its absolute value
179 *
180          IF( K.GT.1 ) THEN
181             IMAX = IDAMAX( K-1, AP( KC ), 1 )
182             COLMAX = ABS( AP( KC+IMAX-1 ) )
183          ELSE
184             COLMAX = ZERO
185          END IF
186 *
187          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
188 *
189 *           Column K is zero: set INFO and continue
190 *
191             IF( INFO.EQ.0 )
192      $         INFO = K
193             KP = K
194          ELSE
195             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
196 *
197 *              no interchange, use 1-by-1 pivot block
198 *
199                KP = K
200             ELSE
201 *
202                ROWMAX = ZERO
203                JMAX = IMAX
204                KX = IMAX*( IMAX+1 ) / 2 + IMAX
205                DO 20 J = IMAX + 1, K
206                   IFABS( AP( KX ) ).GT.ROWMAX ) THEN
207                      ROWMAX = ABS( AP( KX ) )
208                      JMAX = J
209                   END IF
210                   KX = KX + J
211    20          CONTINUE
212                KPC = ( IMAX-1 )*IMAX / 2 + 1
213                IF( IMAX.GT.1 ) THEN
214                   JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
215                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
216                END IF
217 *
218                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
219 *
220 *                 no interchange, use 1-by-1 pivot block
221 *
222                   KP = K
223                ELSE IFABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
224 *
225 *                 interchange rows and columns K and IMAX, use 1-by-1
226 *                 pivot block
227 *
228                   KP = IMAX
229                ELSE
230 *
231 *                 interchange rows and columns K-1 and IMAX, use 2-by-2
232 *                 pivot block
233 *
234                   KP = IMAX
235                   KSTEP = 2
236                END IF
237             END IF
238 *
239             KK = K - KSTEP + 1
240             IF( KSTEP.EQ.2 )
241      $         KNC = KNC - K + 1
242             IF( KP.NE.KK ) THEN
243 *
244 *              Interchange rows and columns KK and KP in the leading
245 *              submatrix A(1:k,1:k)
246 *
247                CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
248                KX = KPC + KP - 1
249                DO 30 J = KP + 1, KK - 1
250                   KX = KX + J - 1
251                   T = AP( KNC+J-1 )
252                   AP( KNC+J-1 ) = AP( KX )
253                   AP( KX ) = T
254    30          CONTINUE
255                T = AP( KNC+KK-1 )
256                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
257                AP( KPC+KP-1 ) = T
258                IF( KSTEP.EQ.2 ) THEN
259                   T = AP( KC+K-2 )
260                   AP( KC+K-2 ) = AP( KC+KP-1 )
261                   AP( KC+KP-1 ) = T
262                END IF
263             END IF
264 *
265 *           Update the leading submatrix
266 *
267             IF( KSTEP.EQ.1 ) THEN
268 *
269 *              1-by-1 pivot block D(k): column k now holds
270 *
271 *              W(k) = U(k)*D(k)
272 *
273 *              where U(k) is the k-th column of U
274 *
275 *              Perform a rank-1 update of A(1:k-1,1:k-1) as
276 *
277 *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
278 *
279                R1 = ONE / AP( KC+K-1 )
280                CALL DSPR( UPLO, K-1-R1, AP( KC ), 1, AP )
281 *
282 *              Store U(k) in column k
283 *
284                CALL DSCAL( K-1, R1, AP( KC ), 1 )
285             ELSE
286 *
287 *              2-by-2 pivot block D(k): columns k and k-1 now hold
288 *
289 *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
290 *
291 *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
292 *              of U
293 *
294 *              Perform a rank-2 update of A(1:k-2,1:k-2) as
295 *
296 *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
297 *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
298 *
299                IF( K.GT.2 ) THEN
300 *
301                   D12 = AP( K-1+( K-1 )*/ 2 )
302                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
303                   D11 = AP( K+( K-1 )*/ 2 ) / D12
304                   T = ONE / ( D11*D22-ONE )
305                   D12 = T / D12
306 *
307                   DO 50 J = K - 21-1
308                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
309      $                      AP( J+( K-1 )*/ 2 ) )
310                      WK = D12*( D22*AP( J+( K-1 )*/ 2 )-
311      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
312                      DO 40 I = J, 1-1
313                         AP( I+( J-1 )*/ 2 ) = AP( I+( J-1 )*/ 2 ) -
314      $                     AP( I+( K-1 )*/ 2 )*WK -
315      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
316    40                CONTINUE
317                      AP( J+( K-1 )*/ 2 ) = WK
318                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
319    50             CONTINUE
320 *
321                END IF
322 *
323             END IF
324          END IF
325 *
326 *        Store details of the interchanges in IPIV
327 *
328          IF( KSTEP.EQ.1 ) THEN
329             IPIV( K ) = KP
330          ELSE
331             IPIV( K ) = -KP
332             IPIV( K-1 ) = -KP
333          END IF
334 *
335 *        Decrease K and return to the start of the main loop
336 *
337          K = K - KSTEP
338          KC = KNC - K
339          GO TO 10
340 *
341       ELSE
342 *
343 *        Factorize A as L*D*L**T using the lower triangle of A
344 *
345 *        K is the main loop index, increasing from 1 to N in steps of
346 *        1 or 2
347 *
348          K = 1
349          KC = 1
350          NPP = N*( N+1 ) / 2
351    60    CONTINUE
352          KNC = KC
353 *
354 *        If K > N, exit from loop
355 *
356          IF( K.GT.N )
357      $      GO TO 110
358          KSTEP = 1
359 *
360 *        Determine rows and columns to be interchanged and whether
361 *        a 1-by-1 or 2-by-2 pivot block will be used
362 *
363          ABSAKK = ABS( AP( KC ) )
364 *
365 *        IMAX is the row-index of the largest off-diagonal element in
366 *        column K, and COLMAX is its absolute value
367 *
368          IF( K.LT.N ) THEN
369             IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
370             COLMAX = ABS( AP( KC+IMAX-K ) )
371          ELSE
372             COLMAX = ZERO
373          END IF
374 *
375          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
376 *
377 *           Column K is zero: set INFO and continue
378 *
379             IF( INFO.EQ.0 )
380      $         INFO = K
381             KP = K
382          ELSE
383             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
384 *
385 *              no interchange, use 1-by-1 pivot block
386 *
387                KP = K
388             ELSE
389 *
390 *              JMAX is the column-index of the largest off-diagonal
391 *              element in row IMAX, and ROWMAX is its absolute value
392 *
393                ROWMAX = ZERO
394                KX = KC + IMAX - K
395                DO 70 J = K, IMAX - 1
396                   IFABS( AP( KX ) ).GT.ROWMAX ) THEN
397                      ROWMAX = ABS( AP( KX ) )
398                      JMAX = J
399                   END IF
400                   KX = KX + N - J
401    70          CONTINUE
402                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
403                IF( IMAX.LT.N ) THEN
404                   JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
405                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
406                END IF
407 *
408                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
409 *
410 *                 no interchange, use 1-by-1 pivot block
411 *
412                   KP = K
413                ELSE IFABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
414 *
415 *                 interchange rows and columns K and IMAX, use 1-by-1
416 *                 pivot block
417 *
418                   KP = IMAX
419                ELSE
420 *
421 *                 interchange rows and columns K+1 and IMAX, use 2-by-2
422 *                 pivot block
423 *
424                   KP = IMAX
425                   KSTEP = 2
426                END IF
427             END IF
428 *
429             KK = K + KSTEP - 1
430             IF( KSTEP.EQ.2 )
431      $         KNC = KNC + N - K + 1
432             IF( KP.NE.KK ) THEN
433 *
434 *              Interchange rows and columns KK and KP in the trailing
435 *              submatrix A(k:n,k:n)
436 *
437                IF( KP.LT.N )
438      $            CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
439      $                        1 )
440                KX = KNC + KP - KK
441                DO 80 J = KK + 1, KP - 1
442                   KX = KX + N - J + 1
443                   T = AP( KNC+J-KK )
444                   AP( KNC+J-KK ) = AP( KX )
445                   AP( KX ) = T
446    80          CONTINUE
447                T = AP( KNC )
448                AP( KNC ) = AP( KPC )
449                AP( KPC ) = T
450                IF( KSTEP.EQ.2 ) THEN
451                   T = AP( KC+1 )
452                   AP( KC+1 ) = AP( KC+KP-K )
453                   AP( KC+KP-K ) = T
454                END IF
455             END IF
456 *
457 *           Update the trailing submatrix
458 *
459             IF( KSTEP.EQ.1 ) THEN
460 *
461 *              1-by-1 pivot block D(k): column k now holds
462 *
463 *              W(k) = L(k)*D(k)
464 *
465 *              where L(k) is the k-th column of L
466 *
467                IF( K.LT.N ) THEN
468 *
469 *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
470 *
471 *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
472 *
473                   R1 = ONE / AP( KC )
474                   CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
475      $                       AP( KC+N-K+1 ) )
476 *
477 *                 Store L(k) in column K
478 *
479                   CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
480                END IF
481             ELSE
482 *
483 *              2-by-2 pivot block D(k): columns K and K+1 now hold
484 *
485 *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
486 *
487 *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
488 *              of L
489 *
490                IF( K.LT.N-1 ) THEN
491 *
492 *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
493 *
494 *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
495 *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
496 *
497 *                 where L(k) and L(k+1) are the k-th and (k+1)-th
498 *                 columns of L
499 *
500                   D21 = AP( K+1+( K-1 )*2*N-K ) / 2 )
501                   D11 = AP( K+1+K*2*N-K-1 ) / 2 ) / D21
502                   D22 = AP( K+( K-1 )*2*N-K ) / 2 ) / D21
503                   T = ONE / ( D11*D22-ONE )
504                   D21 = T / D21
505 *
506                   DO 100 J = K + 2, N
507                      WK = D21*( D11*AP( J+( K-1 )*2*N-K ) / 2 )-
508      $                    AP( J+K*2*N-K-1 ) / 2 ) )
509                      WKP1 = D21*( D22*AP( J+K*2*N-K-1 ) / 2 )-
510      $                      AP( J+( K-1 )*2*N-K ) / 2 ) )
511 *
512                      DO 90 I = J, N
513                         AP( I+( J-1 )*2*N-J ) / 2 ) = AP( I+( J-1 )*
514      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*2*N-K ) /
515      $                     2 )*WK - AP( I+K*2*N-K-1 ) / 2 )*WKP1
516    90                CONTINUE
517 *
518                      AP( J+( K-1 )*2*N-K ) / 2 ) = WK
519                      AP( J+K*2*N-K-1 ) / 2 ) = WKP1
520 *
521   100             CONTINUE
522                END IF
523             END IF
524          END IF
525 *
526 *        Store details of the interchanges in IPIV
527 *
528          IF( KSTEP.EQ.1 ) THEN
529             IPIV( K ) = KP
530          ELSE
531             IPIV( K ) = -KP
532             IPIV( K+1 ) = -KP
533          END IF
534 *
535 *        Increase K and return to the start of the main loop
536 *
537          K = K + KSTEP
538          KC = KNC + N - K + 2
539          GO TO 60
540 *
541       END IF
542 *
543   110 CONTINUE
544       RETURN
545 *
546 *     End of DSPTRF
547 *
548       END