1       SUBROUTINE DSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       DOUBLE PRECISION   AP( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DSPTRI computes the inverse of a real symmetric indefinite matrix
 21 *  A in packed storage using the factorization A = U*D*U**T or
 22 *  A = L*D*L**T computed by DSPTRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 37 *          On entry, the block diagonal matrix D and the multipliers
 38 *          used to obtain the factor U or L as computed by DSPTRF,
 39 *          stored as a packed triangular matrix.
 40 *
 41 *          On exit, if INFO = 0, the (symmetric) inverse of the original
 42 *          matrix, stored as a packed triangular matrix. The j-th column
 43 *          of inv(A) is stored in the array AP as follows:
 44 *          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
 45 *          if UPLO = 'L',
 46 *             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
 47 *
 48 *  IPIV    (input) INTEGER array, dimension (N)
 49 *          Details of the interchanges and the block structure of D
 50 *          as determined by DSPTRF.
 51 *
 52 *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument had an illegal value
 57 *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 58 *               inverse could not be computed.
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       DOUBLE PRECISION   ONE, ZERO
 64       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 65 *     ..
 66 *     .. Local Scalars ..
 67       LOGICAL            UPPER
 68       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
 69       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
 70 *     ..
 71 *     .. External Functions ..
 72       LOGICAL            LSAME
 73       DOUBLE PRECISION   DDOT
 74       EXTERNAL           LSAME, DDOT
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           DCOPY, DSPMV, DSWAP, XERBLA
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          ABS
 81 *     ..
 82 *     .. Executable Statements ..
 83 *
 84 *     Test the input parameters.
 85 *
 86       INFO = 0
 87       UPPER = LSAME( UPLO, 'U' )
 88       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 89          INFO = -1
 90       ELSE IF( N.LT.0 ) THEN
 91          INFO = -2
 92       END IF
 93       IF( INFO.NE.0 ) THEN
 94          CALL XERBLA( 'DSPTRI'-INFO )
 95          RETURN
 96       END IF
 97 *
 98 *     Quick return if possible
 99 *
100       IF( N.EQ.0 )
101      $   RETURN
102 *
103 *     Check that the diagonal matrix D is nonsingular.
104 *
105       IF( UPPER ) THEN
106 *
107 *        Upper triangular storage: examine D from bottom to top
108 *
109          KP = N*( N+1 ) / 2
110          DO 10 INFO = N, 1-1
111             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
112      $         RETURN
113             KP = KP - INFO
114    10    CONTINUE
115       ELSE
116 *
117 *        Lower triangular storage: examine D from top to bottom.
118 *
119          KP = 1
120          DO 20 INFO = 1, N
121             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
122      $         RETURN
123             KP = KP + N - INFO + 1
124    20    CONTINUE
125       END IF
126       INFO = 0
127 *
128       IF( UPPER ) THEN
129 *
130 *        Compute inv(A) from the factorization A = U*D*U**T.
131 *
132 *        K is the main loop index, increasing from 1 to N in steps of
133 *        1 or 2, depending on the size of the diagonal blocks.
134 *
135          K = 1
136          KC = 1
137    30    CONTINUE
138 *
139 *        If K > N, exit from loop.
140 *
141          IF( K.GT.N )
142      $      GO TO 50
143 *
144          KCNEXT = KC + K
145          IF( IPIV( K ).GT.0 ) THEN
146 *
147 *           1 x 1 diagonal block
148 *
149 *           Invert the diagonal block.
150 *
151             AP( KC+K-1 ) = ONE / AP( KC+K-1 )
152 *
153 *           Compute column K of the inverse.
154 *
155             IF( K.GT.1 ) THEN
156                CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 )
157                CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO, AP( KC ),
158      $                     1 )
159                AP( KC+K-1 ) = AP( KC+K-1 ) -
160      $                        DDOT( K-1, WORK, 1, AP( KC ), 1 )
161             END IF
162             KSTEP = 1
163          ELSE
164 *
165 *           2 x 2 diagonal block
166 *
167 *           Invert the diagonal block.
168 *
169             T = ABS( AP( KCNEXT+K-1 ) )
170             AK = AP( KC+K-1 ) / T
171             AKP1 = AP( KCNEXT+K ) / T
172             AKKP1 = AP( KCNEXT+K-1 ) / T
173             D = T*( AK*AKP1-ONE )
174             AP( KC+K-1 ) = AKP1 / D
175             AP( KCNEXT+K ) = AK / D
176             AP( KCNEXT+K-1 ) = -AKKP1 / D
177 *
178 *           Compute columns K and K+1 of the inverse.
179 *
180             IF( K.GT.1 ) THEN
181                CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 )
182                CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO, AP( KC ),
183      $                     1 )
184                AP( KC+K-1 ) = AP( KC+K-1 ) -
185      $                        DDOT( K-1, WORK, 1, AP( KC ), 1 )
186                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
187      $                            DDOT( K-1, AP( KC ), 1, AP( KCNEXT ),
188      $                            1 )
189                CALL DCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
190                CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO,
191      $                     AP( KCNEXT ), 1 )
192                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
193      $                          DDOT( K-1, WORK, 1, AP( KCNEXT ), 1 )
194             END IF
195             KSTEP = 2
196             KCNEXT = KCNEXT + K + 1
197          END IF
198 *
199          KP = ABS( IPIV( K ) )
200          IF( KP.NE.K ) THEN
201 *
202 *           Interchange rows and columns K and KP in the leading
203 *           submatrix A(1:k+1,1:k+1)
204 *
205             KPC = ( KP-1 )*KP / 2 + 1
206             CALL DSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
207             KX = KPC + KP - 1
208             DO 40 J = KP + 1, K - 1
209                KX = KX + J - 1
210                TEMP = AP( KC+J-1 )
211                AP( KC+J-1 ) = AP( KX )
212                AP( KX ) = TEMP
213    40       CONTINUE
214             TEMP = AP( KC+K-1 )
215             AP( KC+K-1 ) = AP( KPC+KP-1 )
216             AP( KPC+KP-1 ) = TEMP
217             IF( KSTEP.EQ.2 ) THEN
218                TEMP = AP( KC+K+K-1 )
219                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
220                AP( KC+K+KP-1 ) = TEMP
221             END IF
222          END IF
223 *
224          K = K + KSTEP
225          KC = KCNEXT
226          GO TO 30
227    50    CONTINUE
228 *
229       ELSE
230 *
231 *        Compute inv(A) from the factorization A = L*D*L**T.
232 *
233 *        K is the main loop index, increasing from 1 to N in steps of
234 *        1 or 2, depending on the size of the diagonal blocks.
235 *
236          NPP = N*( N+1 ) / 2
237          K = N
238          KC = NPP
239    60    CONTINUE
240 *
241 *        If K < 1, exit from loop.
242 *
243          IF( K.LT.1 )
244      $      GO TO 80
245 *
246          KCNEXT = KC - ( N-K+2 )
247          IF( IPIV( K ).GT.0 ) THEN
248 *
249 *           1 x 1 diagonal block
250 *
251 *           Invert the diagonal block.
252 *
253             AP( KC ) = ONE / AP( KC )
254 *
255 *           Compute column K of the inverse.
256 *
257             IF( K.LT.N ) THEN
258                CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
259                CALL DSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
260      $                     ZERO, AP( KC+1 ), 1 )
261                AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
262             END IF
263             KSTEP = 1
264          ELSE
265 *
266 *           2 x 2 diagonal block
267 *
268 *           Invert the diagonal block.
269 *
270             T = ABS( AP( KCNEXT+1 ) )
271             AK = AP( KCNEXT ) / T
272             AKP1 = AP( KC ) / T
273             AKKP1 = AP( KCNEXT+1 ) / T
274             D = T*( AK*AKP1-ONE )
275             AP( KCNEXT ) = AKP1 / D
276             AP( KC ) = AK / D
277             AP( KCNEXT+1 ) = -AKKP1 / D
278 *
279 *           Compute columns K-1 and K of the inverse.
280 *
281             IF( K.LT.N ) THEN
282                CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
283                CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
284      $                     ZERO, AP( KC+1 ), 1 )
285                AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
286                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
287      $                          DDOT( N-K, AP( KC+1 ), 1,
288      $                          AP( KCNEXT+2 ), 1 )
289                CALL DCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
290                CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
291      $                     ZERO, AP( KCNEXT+2 ), 1 )
292                AP( KCNEXT ) = AP( KCNEXT ) -
293      $                        DDOT( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
294             END IF
295             KSTEP = 2
296             KCNEXT = KCNEXT - ( N-K+3 )
297          END IF
298 *
299          KP = ABS( IPIV( K ) )
300          IF( KP.NE.K ) THEN
301 *
302 *           Interchange rows and columns K and KP in the trailing
303 *           submatrix A(k-1:n,k-1:n)
304 *
305             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
306             IF( KP.LT.N )
307      $         CALL DSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
308             KX = KC + KP - K
309             DO 70 J = K + 1, KP - 1
310                KX = KX + N - J + 1
311                TEMP = AP( KC+J-K )
312                AP( KC+J-K ) = AP( KX )
313                AP( KX ) = TEMP
314    70       CONTINUE
315             TEMP = AP( KC )
316             AP( KC ) = AP( KPC )
317             AP( KPC ) = TEMP
318             IF( KSTEP.EQ.2 ) THEN
319                TEMP = AP( KC-N+K-1 )
320                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
321                AP( KC-N+KP-1 ) = TEMP
322             END IF
323          END IF
324 *
325          K = K - KSTEP
326          KC = KCNEXT
327          GO TO 60
328    80    CONTINUE
329       END IF
330 *
331       RETURN
332 *
333 *     End of DSPTRI
334 *
335       END