1       SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          COMPZ
 10       INTEGER            INFO, LDZ, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
 20 *  symmetric tridiagonal matrix using the implicit QL or QR method.
 21 *  The eigenvectors of a full or band symmetric matrix can also be found
 22 *  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
 23 *  tridiagonal form.
 24 *
 25 *  Arguments
 26 *  =========
 27 *
 28 *  COMPZ   (input) CHARACTER*1
 29 *          = 'N':  Compute eigenvalues only.
 30 *          = 'V':  Compute eigenvalues and eigenvectors of the original
 31 *                  symmetric matrix.  On entry, Z must contain the
 32 *                  orthogonal matrix used to reduce the original matrix
 33 *                  to tridiagonal form.
 34 *          = 'I':  Compute eigenvalues and eigenvectors of the
 35 *                  tridiagonal matrix.  Z is initialized to the identity
 36 *                  matrix.
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix.  N >= 0.
 40 *
 41 *  D       (input/output) DOUBLE PRECISION array, dimension (N)
 42 *          On entry, the diagonal elements of the tridiagonal matrix.
 43 *          On exit, if INFO = 0, the eigenvalues in ascending order.
 44 *
 45 *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
 46 *          On entry, the (n-1) subdiagonal elements of the tridiagonal
 47 *          matrix.
 48 *          On exit, E has been destroyed.
 49 *
 50 *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
 51 *          On entry, if  COMPZ = 'V', then Z contains the orthogonal
 52 *          matrix used in the reduction to tridiagonal form.
 53 *          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
 54 *          orthonormal eigenvectors of the original symmetric matrix,
 55 *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 56 *          of the symmetric tridiagonal matrix.
 57 *          If COMPZ = 'N', then Z is not referenced.
 58 *
 59 *  LDZ     (input) INTEGER
 60 *          The leading dimension of the array Z.  LDZ >= 1, and if
 61 *          eigenvectors are desired, then  LDZ >= max(1,N).
 62 *
 63 *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
 64 *          If COMPZ = 'N', then WORK is not referenced.
 65 *
 66 *  INFO    (output) INTEGER
 67 *          = 0:  successful exit
 68 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 69 *          > 0:  the algorithm has failed to find all the eigenvalues in
 70 *                a total of 30*N iterations; if INFO = i, then i
 71 *                elements of E have not converged to zero; on exit, D
 72 *                and E contain the elements of a symmetric tridiagonal
 73 *                matrix which is orthogonally similar to the original
 74 *                matrix.
 75 *
 76 *  =====================================================================
 77 *
 78 *     .. Parameters ..
 79       DOUBLE PRECISION   ZERO, ONE, TWO, THREE
 80       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 81      $                   THREE = 3.0D0 )
 82       INTEGER            MAXIT
 83       PARAMETER          ( MAXIT = 30 )
 84 *     ..
 85 *     .. Local Scalars ..
 86       INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
 87      $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
 88      $                   NM1, NMAXIT
 89       DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
 90      $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
 91 *     ..
 92 *     .. External Functions ..
 93       LOGICAL            LSAME
 94       DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
 95       EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
 96 *     ..
 97 *     .. External Subroutines ..
 98       EXTERNAL           DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR,
 99      $                   DLASRT, DSWAP, XERBLA
100 *     ..
101 *     .. Intrinsic Functions ..
102       INTRINSIC          ABSMAXSIGNSQRT
103 *     ..
104 *     .. Executable Statements ..
105 *
106 *     Test the input parameters.
107 *
108       INFO = 0
109 *
110       IF( LSAME( COMPZ, 'N' ) ) THEN
111          ICOMPZ = 0
112       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
113          ICOMPZ = 1
114       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
115          ICOMPZ = 2
116       ELSE
117          ICOMPZ = -1
118       END IF
119       IF( ICOMPZ.LT.0 ) THEN
120          INFO = -1
121       ELSE IF( N.LT.0 ) THEN
122          INFO = -2
123       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX1,
124      $         N ) ) ) THEN
125          INFO = -6
126       END IF
127       IF( INFO.NE.0 ) THEN
128          CALL XERBLA( 'DSTEQR'-INFO )
129          RETURN
130       END IF
131 *
132 *     Quick return if possible
133 *
134       IF( N.EQ.0 )
135      $   RETURN
136 *
137       IF( N.EQ.1 ) THEN
138          IF( ICOMPZ.EQ.2 )
139      $      Z( 11 ) = ONE
140          RETURN
141       END IF
142 *
143 *     Determine the unit roundoff and over/underflow thresholds.
144 *
145       EPS = DLAMCH( 'E' )
146       EPS2 = EPS**2
147       SAFMIN = DLAMCH( 'S' )
148       SAFMAX = ONE / SAFMIN
149       SSFMAX = SQRT( SAFMAX ) / THREE
150       SSFMIN = SQRT( SAFMIN ) / EPS2
151 *
152 *     Compute the eigenvalues and eigenvectors of the tridiagonal
153 *     matrix.
154 *
155       IF( ICOMPZ.EQ.2 )
156      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
157 *
158       NMAXIT = N*MAXIT
159       JTOT = 0
160 *
161 *     Determine where the matrix splits and choose QL or QR iteration
162 *     for each block, according to whether top or bottom diagonal
163 *     element is smaller.
164 *
165       L1 = 1
166       NM1 = N - 1
167 *
168    10 CONTINUE
169       IF( L1.GT.N )
170      $   GO TO 160
171       IF( L1.GT.1 )
172      $   E( L1-1 ) = ZERO
173       IF( L1.LE.NM1 ) THEN
174          DO 20 M = L1, NM1
175             TST = ABS( E( M ) )
176             IF( TST.EQ.ZERO )
177      $         GO TO 30
178             IF( TST.LE.SQRTABS( D( M ) ) )*SQRTABS( D( M+
179      $          1 ) ) ) )*EPS ) THEN
180                E( M ) = ZERO
181                GO TO 30
182             END IF
183    20    CONTINUE
184       END IF
185       M = N
186 *
187    30 CONTINUE
188       L = L1
189       LSV = L
190       LEND = M
191       LENDSV = LEND
192       L1 = M + 1
193       IF( LEND.EQ.L )
194      $   GO TO 10
195 *
196 *     Scale submatrix in rows and columns L to LEND
197 *
198       ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
199       ISCALE = 0
200       IF( ANORM.EQ.ZERO )
201      $   GO TO 10
202       IF( ANORM.GT.SSFMAX ) THEN
203          ISCALE = 1
204          CALL DLASCL( 'G'00, ANORM, SSFMAX, LEND-L+11, D( L ), N,
205      $                INFO )
206          CALL DLASCL( 'G'00, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
207      $                INFO )
208       ELSE IF( ANORM.LT.SSFMIN ) THEN
209          ISCALE = 2
210          CALL DLASCL( 'G'00, ANORM, SSFMIN, LEND-L+11, D( L ), N,
211      $                INFO )
212          CALL DLASCL( 'G'00, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
213      $                INFO )
214       END IF
215 *
216 *     Choose between QL and QR iteration
217 *
218       IFABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
219          LEND = LSV
220          L = LENDSV
221       END IF
222 *
223       IF( LEND.GT.L ) THEN
224 *
225 *        QL Iteration
226 *
227 *        Look for small subdiagonal element.
228 *
229    40    CONTINUE
230          IF( L.NE.LEND ) THEN
231             LENDM1 = LEND - 1
232             DO 50 M = L, LENDM1
233                TST = ABS( E( M ) )**2
234                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
235      $             SAFMIN )GO TO 60
236    50       CONTINUE
237          END IF
238 *
239          M = LEND
240 *
241    60    CONTINUE
242          IF( M.LT.LEND )
243      $      E( M ) = ZERO
244          P = D( L )
245          IF( M.EQ.L )
246      $      GO TO 80
247 *
248 *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
249 *        to compute its eigensystem.
250 *
251          IF( M.EQ.L+1 ) THEN
252             IF( ICOMPZ.GT.0 ) THEN
253                CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
254                WORK( L ) = C
255                WORK( N-1+L ) = S
256                CALL DLASR( 'R''V''B', N, 2, WORK( L ),
257      $                     WORK( N-1+L ), Z( 1, L ), LDZ )
258             ELSE
259                CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
260             END IF
261             D( L ) = RT1
262             D( L+1 ) = RT2
263             E( L ) = ZERO
264             L = L + 2
265             IF( L.LE.LEND )
266      $         GO TO 40
267             GO TO 140
268          END IF
269 *
270          IF( JTOT.EQ.NMAXIT )
271      $      GO TO 140
272          JTOT = JTOT + 1
273 *
274 *        Form shift.
275 *
276          G = ( D( L+1 )-P ) / ( TWO*E( L ) )
277          R = DLAPY2( G, ONE )
278          G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
279 *
280          S = ONE
281          C = ONE
282          P = ZERO
283 *
284 *        Inner loop
285 *
286          MM1 = M - 1
287          DO 70 I = MM1, L, -1
288             F = S*E( I )
289             B = C*E( I )
290             CALL DLARTG( G, F, C, S, R )
291             IF( I.NE.M-1 )
292      $         E( I+1 ) = R
293             G = D( I+1 ) - P
294             R = ( D( I )-G )*+ TWO*C*B
295             P = S*R
296             D( I+1 ) = G + P
297             G = C*- B
298 *
299 *           If eigenvectors are desired, then save rotations.
300 *
301             IF( ICOMPZ.GT.0 ) THEN
302                WORK( I ) = C
303                WORK( N-1+I ) = -S
304             END IF
305 *
306    70    CONTINUE
307 *
308 *        If eigenvectors are desired, then apply saved rotations.
309 *
310          IF( ICOMPZ.GT.0 ) THEN
311             MM = M - L + 1
312             CALL DLASR( 'R''V''B', N, MM, WORK( L ), WORK( N-1+L ),
313      $                  Z( 1, L ), LDZ )
314          END IF
315 *
316          D( L ) = D( L ) - P
317          E( L ) = G
318          GO TO 40
319 *
320 *        Eigenvalue found.
321 *
322    80    CONTINUE
323          D( L ) = P
324 *
325          L = L + 1
326          IF( L.LE.LEND )
327      $      GO TO 40
328          GO TO 140
329 *
330       ELSE
331 *
332 *        QR Iteration
333 *
334 *        Look for small superdiagonal element.
335 *
336    90    CONTINUE
337          IF( L.NE.LEND ) THEN
338             LENDP1 = LEND + 1
339             DO 100 M = L, LENDP1, -1
340                TST = ABS( E( M-1 ) )**2
341                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
342      $             SAFMIN )GO TO 110
343   100       CONTINUE
344          END IF
345 *
346          M = LEND
347 *
348   110    CONTINUE
349          IF( M.GT.LEND )
350      $      E( M-1 ) = ZERO
351          P = D( L )
352          IF( M.EQ.L )
353      $      GO TO 130
354 *
355 *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
356 *        to compute its eigensystem.
357 *
358          IF( M.EQ.L-1 ) THEN
359             IF( ICOMPZ.GT.0 ) THEN
360                CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
361                WORK( M ) = C
362                WORK( N-1+M ) = S
363                CALL DLASR( 'R''V''F', N, 2, WORK( M ),
364      $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
365             ELSE
366                CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
367             END IF
368             D( L-1 ) = RT1
369             D( L ) = RT2
370             E( L-1 ) = ZERO
371             L = L - 2
372             IF( L.GE.LEND )
373      $         GO TO 90
374             GO TO 140
375          END IF
376 *
377          IF( JTOT.EQ.NMAXIT )
378      $      GO TO 140
379          JTOT = JTOT + 1
380 *
381 *        Form shift.
382 *
383          G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
384          R = DLAPY2( G, ONE )
385          G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
386 *
387          S = ONE
388          C = ONE
389          P = ZERO
390 *
391 *        Inner loop
392 *
393          LM1 = L - 1
394          DO 120 I = M, LM1
395             F = S*E( I )
396             B = C*E( I )
397             CALL DLARTG( G, F, C, S, R )
398             IF( I.NE.M )
399      $         E( I-1 ) = R
400             G = D( I ) - P
401             R = ( D( I+1 )-G )*+ TWO*C*B
402             P = S*R
403             D( I ) = G + P
404             G = C*- B
405 *
406 *           If eigenvectors are desired, then save rotations.
407 *
408             IF( ICOMPZ.GT.0 ) THEN
409                WORK( I ) = C
410                WORK( N-1+I ) = S
411             END IF
412 *
413   120    CONTINUE
414 *
415 *        If eigenvectors are desired, then apply saved rotations.
416 *
417          IF( ICOMPZ.GT.0 ) THEN
418             MM = L - M + 1
419             CALL DLASR( 'R''V''F', N, MM, WORK( M ), WORK( N-1+M ),
420      $                  Z( 1, M ), LDZ )
421          END IF
422 *
423          D( L ) = D( L ) - P
424          E( LM1 ) = G
425          GO TO 90
426 *
427 *        Eigenvalue found.
428 *
429   130    CONTINUE
430          D( L ) = P
431 *
432          L = L - 1
433          IF( L.GE.LEND )
434      $      GO TO 90
435          GO TO 140
436 *
437       END IF
438 *
439 *     Undo scaling if necessary
440 *
441   140 CONTINUE
442       IF( ISCALE.EQ.1 ) THEN
443          CALL DLASCL( 'G'00, SSFMAX, ANORM, LENDSV-LSV+11,
444      $                D( LSV ), N, INFO )
445          CALL DLASCL( 'G'00, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
446      $                N, INFO )
447       ELSE IF( ISCALE.EQ.2 ) THEN
448          CALL DLASCL( 'G'00, SSFMIN, ANORM, LENDSV-LSV+11,
449      $                D( LSV ), N, INFO )
450          CALL DLASCL( 'G'00, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
451      $                N, INFO )
452       END IF
453 *
454 *     Check for no convergence to an eigenvalue after a total
455 *     of N*MAXIT iterations.
456 *
457       IF( JTOT.LT.NMAXIT )
458      $   GO TO 10
459       DO 150 I = 1, N - 1
460          IF( E( I ).NE.ZERO )
461      $      INFO = INFO + 1
462   150 CONTINUE
463       GO TO 190
464 *
465 *     Order eigenvalues and eigenvectors.
466 *
467   160 CONTINUE
468       IF( ICOMPZ.EQ.0 ) THEN
469 *
470 *        Use Quick Sort
471 *
472          CALL DLASRT( 'I', N, D, INFO )
473 *
474       ELSE
475 *
476 *        Use Selection Sort to minimize swaps of eigenvectors
477 *
478          DO 180 II = 2, N
479             I = II - 1
480             K = I
481             P = D( I )
482             DO 170 J = II, N
483                IF( D( J ).LT.P ) THEN
484                   K = J
485                   P = D( J )
486                END IF
487   170       CONTINUE
488             IF( K.NE.I ) THEN
489                D( K ) = D( I )
490                D( I ) = P
491                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
492             END IF
493   180    CONTINUE
494       END IF
495 *
496   190 CONTINUE
497       RETURN
498 *
499 *     End of DSTEQR
500 *
501       END