1       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  2      $                   LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ
 11       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
 22 *  real symmetric tridiagonal matrix. If eigenvectors are desired, it
 23 *  uses a divide and conquer algorithm.
 24 *
 25 *  The divide and conquer algorithm makes very mild assumptions about
 26 *  floating point arithmetic. It will work on machines with a guard
 27 *  digit in add/subtract, or on those binary machines without guard
 28 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 29 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 30 *  without guard digits, but we know of none.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  JOBZ    (input) CHARACTER*1
 36 *          = 'N':  Compute eigenvalues only;
 37 *          = 'V':  Compute eigenvalues and eigenvectors.
 38 *
 39 *  N       (input) INTEGER
 40 *          The order of the matrix.  N >= 0.
 41 *
 42 *  D       (input/output) DOUBLE PRECISION array, dimension (N)
 43 *          On entry, the n diagonal elements of the tridiagonal matrix
 44 *          A.
 45 *          On exit, if INFO = 0, the eigenvalues in ascending order.
 46 *
 47 *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
 48 *          On entry, the (n-1) subdiagonal elements of the tridiagonal
 49 *          matrix A, stored in elements 1 to N-1 of E.
 50 *          On exit, the contents of E are destroyed.
 51 *
 52 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
 53 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 54 *          eigenvectors of the matrix A, with the i-th column of Z
 55 *          holding the eigenvector associated with D(i).
 56 *          If JOBZ = 'N', then Z is not referenced.
 57 *
 58 *  LDZ     (input) INTEGER
 59 *          The leading dimension of the array Z.  LDZ >= 1, and if
 60 *          JOBZ = 'V', LDZ >= max(1,N).
 61 *
 62 *  WORK    (workspace/output) DOUBLE PRECISION array,
 63 *                                         dimension (LWORK)
 64 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 65 *
 66 *  LWORK   (input) INTEGER
 67 *          The dimension of the array WORK.
 68 *          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
 69 *          If JOBZ  = 'V' and N > 1 then LWORK must be at least
 70 *                         ( 1 + 4*N + N**2 ).
 71 *
 72 *          If LWORK = -1, then a workspace query is assumed; the routine
 73 *          only calculates the optimal sizes of the WORK and IWORK
 74 *          arrays, returns these values as the first entries of the WORK
 75 *          and IWORK arrays, and no error message related to LWORK or
 76 *          LIWORK is issued by XERBLA.
 77 *
 78 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
 79 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 80 *
 81 *  LIWORK  (input) INTEGER
 82 *          The dimension of the array IWORK.
 83 *          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
 84 *          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
 85 *
 86 *          If LIWORK = -1, then a workspace query is assumed; the
 87 *          routine only calculates the optimal sizes of the WORK and
 88 *          IWORK arrays, returns these values as the first entries of
 89 *          the WORK and IWORK arrays, and no error message related to
 90 *          LWORK or LIWORK is issued by XERBLA.
 91 *
 92 *  INFO    (output) INTEGER
 93 *          = 0:  successful exit
 94 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 95 *          > 0:  if INFO = i, the algorithm failed to converge; i
 96 *                off-diagonal elements of E did not converge to zero.
 97 *
 98 *  =====================================================================
 99 *
100 *     .. Parameters ..
101       DOUBLE PRECISION   ZERO, ONE
102       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
103 *     ..
104 *     .. Local Scalars ..
105       LOGICAL            LQUERY, WANTZ
106       INTEGER            ISCALE, LIWMIN, LWMIN
107       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
108      $                   TNRM
109 *     ..
110 *     .. External Functions ..
111       LOGICAL            LSAME
112       DOUBLE PRECISION   DLAMCH, DLANST
113       EXTERNAL           LSAME, DLAMCH, DLANST
114 *     ..
115 *     .. External Subroutines ..
116       EXTERNAL           DSCAL, DSTEDC, DSTERF, XERBLA
117 *     ..
118 *     .. Intrinsic Functions ..
119       INTRINSIC          SQRT
120 *     ..
121 *     .. Executable Statements ..
122 *
123 *     Test the input parameters.
124 *
125       WANTZ = LSAME( JOBZ, 'V' )
126       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
127 *
128       INFO = 0
129       LIWMIN = 1
130       LWMIN = 1
131       IF( N.GT.1 .AND. WANTZ ) THEN
132          LWMIN = 1 + 4*+ N**2
133          LIWMIN = 3 + 5*N
134       END IF
135 *
136       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
137          INFO = -1
138       ELSE IF( N.LT.0 ) THEN
139          INFO = -2
140       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
141          INFO = -6
142       END IF
143 *
144       IF( INFO.EQ.0 ) THEN
145          WORK( 1 ) = LWMIN
146          IWORK( 1 ) = LIWMIN
147 *
148          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
149             INFO = -8
150          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
151             INFO = -10
152          END IF
153       END IF
154 *
155       IF( INFO.NE.0 ) THEN
156          CALL XERBLA( 'DSTEVD'-INFO )
157          RETURN
158       ELSE IF( LQUERY ) THEN
159          RETURN
160       END IF
161 *
162 *     Quick return if possible
163 *
164       IF( N.EQ.0 )
165      $   RETURN
166 *
167       IF( N.EQ.1 ) THEN
168          IF( WANTZ )
169      $      Z( 11 ) = ONE
170          RETURN
171       END IF
172 *
173 *     Get machine constants.
174 *
175       SAFMIN = DLAMCH( 'Safe minimum' )
176       EPS = DLAMCH( 'Precision' )
177       SMLNUM = SAFMIN / EPS
178       BIGNUM = ONE / SMLNUM
179       RMIN = SQRT( SMLNUM )
180       RMAX = SQRT( BIGNUM )
181 *
182 *     Scale matrix to allowable range, if necessary.
183 *
184       ISCALE = 0
185       TNRM = DLANST( 'M', N, D, E )
186       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
187          ISCALE = 1
188          SIGMA = RMIN / TNRM
189       ELSE IF( TNRM.GT.RMAX ) THEN
190          ISCALE = 1
191          SIGMA = RMAX / TNRM
192       END IF
193       IF( ISCALE.EQ.1 ) THEN
194          CALL DSCAL( N, SIGMA, D, 1 )
195          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
196       END IF
197 *
198 *     For eigenvalues only, call DSTERF.  For eigenvalues and
199 *     eigenvectors, call DSTEDC.
200 *
201       IF.NOT.WANTZ ) THEN
202          CALL DSTERF( N, D, E, INFO )
203       ELSE
204          CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
205      $                INFO )
206       END IF
207 *
208 *     If matrix was scaled, then rescale eigenvalues appropriately.
209 *
210       IF( ISCALE.EQ.1 )
211      $   CALL DSCAL( N, ONE / SIGMA, D, 1 )
212 *
213       WORK( 1 ) = LWMIN
214       IWORK( 1 ) = LIWMIN
215 *
216       RETURN
217 *
218 *     End of DSTEVD
219 *
220       END