1       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  2      $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
  3      $                   LIWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBZ, RANGE
 12       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 13       DOUBLE PRECISION   ABSTOL, VL, VU
 14 *     ..
 15 *     .. Array Arguments ..
 16       INTEGER            ISUPPZ( * ), IWORK( * )
 17       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  DSTEVR computes selected eigenvalues and, optionally, eigenvectors
 24 *  of a real symmetric tridiagonal matrix T.  Eigenvalues and
 25 *  eigenvectors can be selected by specifying either a range of values
 26 *  or a range of indices for the desired eigenvalues.
 27 *
 28 *  Whenever possible, DSTEVR calls DSTEMR to compute the
 29 *  eigenspectrum using Relatively Robust Representations.  DSTEMR
 30 *  computes eigenvalues by the dqds algorithm, while orthogonal
 31 *  eigenvectors are computed from various "good" L D L^T representations
 32 *  (also known as Relatively Robust Representations). Gram-Schmidt
 33 *  orthogonalization is avoided as far as possible. More specifically,
 34 *  the various steps of the algorithm are as follows. For the i-th
 35 *  unreduced block of T,
 36 *     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
 37 *          is a relatively robust representation,
 38 *     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
 39 *         relative accuracy by the dqds algorithm,
 40 *     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
 41 *         close to the cluster, and go to step (a),
 42 *     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
 43 *         compute the corresponding eigenvector by forming a
 44 *         rank-revealing twisted factorization.
 45 *  The desired accuracy of the output can be specified by the input
 46 *  parameter ABSTOL.
 47 *
 48 *  For more details, see "A new O(n^2) algorithm for the symmetric
 49 *  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
 50 *  Computer Science Division Technical Report No. UCB//CSD-97-971,
 51 *  UC Berkeley, May 1997.
 52 *
 53 *
 54 *  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
 55 *  on machines which conform to the ieee-754 floating point standard.
 56 *  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
 57 *  when partial spectrum requests are made.
 58 *
 59 *  Normal execution of DSTEMR may create NaNs and infinities and
 60 *  hence may abort due to a floating point exception in environments
 61 *  which do not handle NaNs and infinities in the ieee standard default
 62 *  manner.
 63 *
 64 *  Arguments
 65 *  =========
 66 *
 67 *  JOBZ    (input) CHARACTER*1
 68 *          = 'N':  Compute eigenvalues only;
 69 *          = 'V':  Compute eigenvalues and eigenvectors.
 70 *
 71 *  RANGE   (input) CHARACTER*1
 72 *          = 'A': all eigenvalues will be found.
 73 *          = 'V': all eigenvalues in the half-open interval (VL,VU]
 74 *                 will be found.
 75 *          = 'I': the IL-th through IU-th eigenvalues will be found.
 76 ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
 77 ********** DSTEIN are called
 78 *
 79 *  N       (input) INTEGER
 80 *          The order of the matrix.  N >= 0.
 81 *
 82 *  D       (input/output) DOUBLE PRECISION array, dimension (N)
 83 *          On entry, the n diagonal elements of the tridiagonal matrix
 84 *          A.
 85 *          On exit, D may be multiplied by a constant factor chosen
 86 *          to avoid over/underflow in computing the eigenvalues.
 87 *
 88 *  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
 89 *          On entry, the (n-1) subdiagonal elements of the tridiagonal
 90 *          matrix A in elements 1 to N-1 of E.
 91 *          On exit, E may be multiplied by a constant factor chosen
 92 *          to avoid over/underflow in computing the eigenvalues.
 93 *
 94 *  VL      (input) DOUBLE PRECISION
 95 *  VU      (input) DOUBLE PRECISION
 96 *          If RANGE='V', the lower and upper bounds of the interval to
 97 *          be searched for eigenvalues. VL < VU.
 98 *          Not referenced if RANGE = 'A' or 'I'.
 99 *
100 *  IL      (input) INTEGER
101 *  IU      (input) INTEGER
102 *          If RANGE='I', the indices (in ascending order) of the
103 *          smallest and largest eigenvalues to be returned.
104 *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
105 *          Not referenced if RANGE = 'A' or 'V'.
106 *
107 *  ABSTOL  (input) DOUBLE PRECISION
108 *          The absolute error tolerance for the eigenvalues.
109 *          An approximate eigenvalue is accepted as converged
110 *          when it is determined to lie in an interval [a,b]
111 *          of width less than or equal to
112 *
113 *                  ABSTOL + EPS *   max( |a|,|b| ) ,
114 *
115 *          where EPS is the machine precision.  If ABSTOL is less than
116 *          or equal to zero, then  EPS*|T|  will be used in its place,
117 *          where |T| is the 1-norm of the tridiagonal matrix obtained
118 *          by reducing A to tridiagonal form.
119 *
120 *          See "Computing Small Singular Values of Bidiagonal Matrices
121 *          with Guaranteed High Relative Accuracy," by Demmel and
122 *          Kahan, LAPACK Working Note #3.
123 *
124 *          If high relative accuracy is important, set ABSTOL to
125 *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
126 *          eigenvalues are computed to high relative accuracy when
127 *          possible in future releases.  The current code does not
128 *          make any guarantees about high relative accuracy, but
129 *          future releases will. See J. Barlow and J. Demmel,
130 *          "Computing Accurate Eigensystems of Scaled Diagonally
131 *          Dominant Matrices", LAPACK Working Note #7, for a discussion
132 *          of which matrices define their eigenvalues to high relative
133 *          accuracy.
134 *
135 *  M       (output) INTEGER
136 *          The total number of eigenvalues found.  0 <= M <= N.
137 *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
138 *
139 *  W       (output) DOUBLE PRECISION array, dimension (N)
140 *          The first M elements contain the selected eigenvalues in
141 *          ascending order.
142 *
143 *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
144 *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
145 *          contain the orthonormal eigenvectors of the matrix A
146 *          corresponding to the selected eigenvalues, with the i-th
147 *          column of Z holding the eigenvector associated with W(i).
148 *          Note: the user must ensure that at least max(1,M) columns are
149 *          supplied in the array Z; if RANGE = 'V', the exact value of M
150 *          is not known in advance and an upper bound must be used.
151 *
152 *  LDZ     (input) INTEGER
153 *          The leading dimension of the array Z.  LDZ >= 1, and if
154 *          JOBZ = 'V', LDZ >= max(1,N).
155 *
156 *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
157 *          The support of the eigenvectors in Z, i.e., the indices
158 *          indicating the nonzero elements in Z. The i-th eigenvector
159 *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
160 *          ISUPPZ( 2*i ).
161 ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
162 *
163 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
164 *          On exit, if INFO = 0, WORK(1) returns the optimal (and
165 *          minimal) LWORK.
166 *
167 *  LWORK   (input) INTEGER
168 *          The dimension of the array WORK.  LWORK >= max(1,20*N).
169 *
170 *          If LWORK = -1, then a workspace query is assumed; the routine
171 *          only calculates the optimal sizes of the WORK and IWORK
172 *          arrays, returns these values as the first entries of the WORK
173 *          and IWORK arrays, and no error message related to LWORK or
174 *          LIWORK is issued by XERBLA.
175 *
176 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
177 *          On exit, if INFO = 0, IWORK(1) returns the optimal (and
178 *          minimal) LIWORK.
179 *
180 *  LIWORK  (input) INTEGER
181 *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
182 *
183 *          If LIWORK = -1, then a workspace query is assumed; the
184 *          routine only calculates the optimal sizes of the WORK and
185 *          IWORK arrays, returns these values as the first entries of
186 *          the WORK and IWORK arrays, and no error message related to
187 *          LWORK or LIWORK is issued by XERBLA.
188 *
189 *  INFO    (output) INTEGER
190 *          = 0:  successful exit
191 *          < 0:  if INFO = -i, the i-th argument had an illegal value
192 *          > 0:  Internal error
193 *
194 *  Further Details
195 *  ===============
196 *
197 *  Based on contributions by
198 *     Inderjit Dhillon, IBM Almaden, USA
199 *     Osni Marques, LBNL/NERSC, USA
200 *     Ken Stanley, Computer Science Division, University of
201 *       California at Berkeley, USA
202 *
203 *  =====================================================================
204 *
205 *     .. Parameters ..
206       DOUBLE PRECISION   ZERO, ONE, TWO
207       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
208 *     ..
209 *     .. Local Scalars ..
210       LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
211      $                   TRYRAC
212       CHARACTER          ORDER
213       INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
214      $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
215      $                   NSPLIT
216       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
217      $                   TMP1, TNRM, VLL, VUU
218 *     ..
219 *     .. External Functions ..
220       LOGICAL            LSAME
221       INTEGER            ILAENV
222       DOUBLE PRECISION   DLAMCH, DLANST
223       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
224 *     ..
225 *     .. External Subroutines ..
226       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
227      $                   DSWAP, XERBLA
228 *     ..
229 *     .. Intrinsic Functions ..
230       INTRINSIC          MAXMINSQRT
231 *     ..
232 *     .. Executable Statements ..
233 *
234 *
235 *     Test the input parameters.
236 *
237       IEEEOK = ILAENV( 10'DSTEVR''N'1234 )
238 *
239       WANTZ = LSAME( JOBZ, 'V' )
240       ALLEIG = LSAME( RANGE'A' )
241       VALEIG = LSAME( RANGE'V' )
242       INDEIG = LSAME( RANGE'I' )
243 *
244       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
245       LWMIN = MAX120*N )
246       LIWMIN = MAX110*N )
247 *
248 *
249       INFO = 0
250       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
251          INFO = -1
252       ELSE IF.NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
253          INFO = -2
254       ELSE IF( N.LT.0 ) THEN
255          INFO = -3
256       ELSE
257          IF( VALEIG ) THEN
258             IF( N.GT.0 .AND. VU.LE.VL )
259      $         INFO = -7
260          ELSE IF( INDEIG ) THEN
261             IF( IL.LT.1 .OR. IL.GT.MAX1, N ) ) THEN
262                INFO = -8
263             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
264                INFO = -9
265             END IF
266          END IF
267       END IF
268       IF( INFO.EQ.0 ) THEN
269          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
270             INFO = -14
271          END IF
272       END IF
273 *
274       IF( INFO.EQ.0 ) THEN
275          WORK( 1 ) = LWMIN
276          IWORK( 1 ) = LIWMIN
277 *
278          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
279             INFO = -17
280          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
281             INFO = -19
282          END IF
283       END IF
284 *
285       IF( INFO.NE.0 ) THEN
286          CALL XERBLA( 'DSTEVR'-INFO )
287          RETURN
288       ELSE IF( LQUERY ) THEN
289          RETURN
290       END IF
291 *
292 *     Quick return if possible
293 *
294       M = 0
295       IF( N.EQ.0 )
296      $   RETURN
297 *
298       IF( N.EQ.1 ) THEN
299          IF( ALLEIG .OR. INDEIG ) THEN
300             M = 1
301             W( 1 ) = D( 1 )
302          ELSE
303             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
304                M = 1
305                W( 1 ) = D( 1 )
306             END IF
307          END IF
308          IF( WANTZ )
309      $      Z( 11 ) = ONE
310          RETURN
311       END IF
312 *
313 *     Get machine constants.
314 *
315       SAFMIN = DLAMCH( 'Safe minimum' )
316       EPS = DLAMCH( 'Precision' )
317       SMLNUM = SAFMIN / EPS
318       BIGNUM = ONE / SMLNUM
319       RMIN = SQRT( SMLNUM )
320       RMAX = MINSQRT( BIGNUM ), ONE / SQRTSQRT( SAFMIN ) ) )
321 *
322 *
323 *     Scale matrix to allowable range, if necessary.
324 *
325       ISCALE = 0
326       VLL = VL
327       VUU = VU
328 *
329       TNRM = DLANST( 'M', N, D, E )
330       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
331          ISCALE = 1
332          SIGMA = RMIN / TNRM
333       ELSE IF( TNRM.GT.RMAX ) THEN
334          ISCALE = 1
335          SIGMA = RMAX / TNRM
336       END IF
337       IF( ISCALE.EQ.1 ) THEN
338          CALL DSCAL( N, SIGMA, D, 1 )
339          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
340          IF( VALEIG ) THEN
341             VLL = VL*SIGMA
342             VUU = VU*SIGMA
343          END IF
344       END IF
345 
346 *     Initialize indices into workspaces.  Note: These indices are used only
347 *     if DSTERF or DSTEMR fail.
348 
349 *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
350 *     stores the block indices of each of the M<=N eigenvalues.
351       INDIBL = 1
352 *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
353 *     stores the starting and finishing indices of each block.
354       INDISP = INDIBL + N
355 *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
356 *     that corresponding to eigenvectors that fail to converge in
357 *     DSTEIN.  This information is discarded; if any fail, the driver
358 *     returns INFO > 0.
359       INDIFL = INDISP + N
360 *     INDIWO is the offset of the remaining integer workspace.
361       INDIWO = INDISP + N
362 *
363 *     If all eigenvalues are desired, then
364 *     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
365 *     try DSTEBZ.
366 *
367 *
368       TEST = .FALSE.
369       IF( INDEIG ) THEN
370          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
371             TEST = .TRUE.
372          END IF
373       END IF
374       IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
375          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
376          IF.NOT.WANTZ ) THEN
377             CALL DCOPY( N, D, 1, W, 1 )
378             CALL DSTERF( N, W, WORK, INFO )
379          ELSE
380             CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
381             IF (ABSTOL .LE. TWO*N*EPS) THEN
382                TRYRAC = .TRUE.
383             ELSE
384                TRYRAC = .FALSE.
385             END IF
386             CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
387      $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
388      $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
389 *
390          END IF
391          IF( INFO.EQ.0 ) THEN
392             M = N
393             GO TO 10
394          END IF
395          INFO = 0
396       END IF
397 *
398 *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
399 *
400       IF( WANTZ ) THEN
401          ORDER = 'B'
402       ELSE
403          ORDER = 'E'
404       END IF
405 
406       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
407      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
408      $             IWORK( INDIWO ), INFO )
409 *
410       IF( WANTZ ) THEN
411          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
412      $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
413      $                INFO )
414       END IF
415 *
416 *     If matrix was scaled, then rescale eigenvalues appropriately.
417 *
418    10 CONTINUE
419       IF( ISCALE.EQ.1 ) THEN
420          IF( INFO.EQ.0 ) THEN
421             IMAX = M
422          ELSE
423             IMAX = INFO - 1
424          END IF
425          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
426       END IF
427 *
428 *     If eigenvalues are not in order, then sort them, along with
429 *     eigenvectors.
430 *
431       IF( WANTZ ) THEN
432          DO 30 J = 1, M - 1
433             I = 0
434             TMP1 = W( J )
435             DO 20 JJ = J + 1, M
436                IF( W( JJ ).LT.TMP1 ) THEN
437                   I = JJ
438                   TMP1 = W( JJ )
439                END IF
440    20       CONTINUE
441 *
442             IF( I.NE.0 ) THEN
443                ITMP1 = IWORK( I )
444                W( I ) = W( J )
445                IWORK( I ) = IWORK( J )
446                W( J ) = TMP1
447                IWORK( J ) = ITMP1
448                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
449             END IF
450    30    CONTINUE
451       END IF
452 *
453 *      Causes problems with tests 19 & 20:
454 *      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
455 *
456 *
457       WORK( 1 ) = LWMIN
458       IWORK( 1 ) = LIWMIN
459       RETURN
460 *
461 *     End of DSTEVR
462 *
463       END