1       SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  2 *
  3 *     -- LAPACK routine (version 3.2.2)                                 --
  4 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  5 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  6 *     -- June 2010                                                    --
  7 *
  8 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
  9 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 10 *
 11       IMPLICIT NONE
 12 *     ..
 13 *     .. Scalar Arguments ..
 14       INTEGER            INFO, LDA, N
 15       DOUBLE PRECISION   AMAX, SCOND
 16       CHARACTER          UPLO
 17 *     ..
 18 *     .. Array Arguments ..
 19       DOUBLE PRECISION   A( LDA, * ), S( * ), WORK( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  DSYEQUB computes row and column scalings intended to equilibrate a
 26 *  symmetric matrix A and reduce its condition number
 27 *  (with respect to the two-norm).  S contains the scale factors,
 28 *  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 29 *  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 30 *  choice of S puts the condition number of B within a factor N of the
 31 *  smallest possible condition number over all possible diagonal
 32 *  scalings.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the details of the factorization are stored
 39 *          as an upper or lower triangular matrix.
 40 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 41 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrix A.  N >= 0.
 45 *
 46 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 47 *          The N-by-N symmetric matrix whose scaling
 48 *          factors are to be computed.  Only the diagonal elements of A
 49 *          are referenced.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  S       (output) DOUBLE PRECISION array, dimension (N)
 55 *          If INFO = 0, S contains the scale factors for A.
 56 *
 57 *  SCOND   (output) DOUBLE PRECISION
 58 *          If INFO = 0, S contains the ratio of the smallest S(i) to
 59 *          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 60 *          large nor too small, it is not worth scaling by S.
 61 *
 62 *  AMAX    (output) DOUBLE PRECISION
 63 *          Absolute value of largest matrix element.  If AMAX is very
 64 *          close to overflow or very close to underflow, the matrix
 65 *          should be scaled.
 66 *
 67 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 68 *
 69 *  INFO    (output) INTEGER
 70 *          = 0:  successful exit
 71 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 72 *          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 73 *
 74 *  Further Details
 75 *  ======= =======
 76 *
 77 *  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
 78 *  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
 79 *  DOI 10.1023/B:NUMA.0000016606.32820.69
 80 *  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
 81 *
 82 *  =====================================================================
 83 *
 84 *     .. Parameters ..
 85       DOUBLE PRECISION   ONE, ZERO
 86       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 87       INTEGER            MAX_ITER
 88       PARAMETER          ( MAX_ITER = 100 )
 89 *     ..
 90 *     .. Local Scalars ..
 91       INTEGER            I, J, ITER
 92       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
 93      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
 94       LOGICAL            UP
 95 *     ..
 96 *     .. External Functions ..
 97       DOUBLE PRECISION   DLAMCH
 98       LOGICAL            LSAME
 99       EXTERNAL           DLAMCH, LSAME
100 *     ..
101 *     .. External Subroutines ..
102       EXTERNAL           DLASSQ
103 *     ..
104 *     .. Intrinsic Functions ..
105       INTRINSIC          ABSINTLOGMAXMINSQRT
106 *     ..
107 *     .. Executable Statements ..
108 *
109 *     Test input parameters.
110 *
111       INFO = 0
112       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
113         INFO = -1
114       ELSE IF ( N .LT. 0 ) THEN
115         INFO = -2
116       ELSE IF ( LDA .LT. MAX1, N ) ) THEN
117         INFO = -4
118       END IF
119       IF ( INFO .NE. 0 ) THEN
120         CALL XERBLA( 'DSYEQUB'-INFO )
121         RETURN
122       END IF
123 
124       UP = LSAME( UPLO, 'U' )
125       AMAX = ZERO
126 *
127 *     Quick return if possible.
128 *
129       IF ( N .EQ. 0 ) THEN
130         SCOND = ONE
131         RETURN
132       END IF
133 
134       DO I = 1, N
135         S( I ) = ZERO
136       END DO
137 
138       AMAX = ZERO
139       IF ( UP ) THEN
140          DO J = 1, N
141             DO I = 1, J-1
142                S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
143                S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
144                AMAX = MAX( AMAX, ABS( A(I, J) ) )
145             END DO
146             S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
147             AMAX = MAX( AMAX, ABS( A( J, J ) ) )
148          END DO
149       ELSE
150          DO J = 1, N
151             S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
152             AMAX = MAX( AMAX, ABS( A( J, J ) ) )
153             DO I = J+1, N
154                S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
155                S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
156                AMAX = MAX( AMAX, ABS( A( I, J ) ) )
157             END DO
158          END DO
159       END IF
160       DO J = 1, N
161          S( J ) = 1.0D+0 / S( J )
162       END DO
163 
164       TOL = ONE / SQRT(2.0D0 * N)
165 
166       DO ITER = 1, MAX_ITER
167          SCALE = 0.0D+0
168          SUMSQ = 0.0D+0
169 *       BETA = |A|S
170         DO I = 1, N
171            WORK(I) = ZERO
172         END DO
173         IF ( UP ) THEN
174            DO J = 1, N
175               DO I = 1, J-1
176                  T = ABS( A( I, J ) )
177                  WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
178                  WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
179               END DO
180               WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
181            END DO
182         ELSE
183            DO J = 1, N
184               WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
185               DO I = J+1, N
186                  T = ABS( A( I, J ) )
187                  WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
188                  WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
189               END DO
190            END DO
191         END IF
192 
193 *       avg = s^T beta / n
194         AVG = 0.0D+0
195         DO I = 1, N
196           AVG = AVG + S( I )*WORK( I )
197         END DO
198         AVG = AVG / N
199 
200         STD = 0.0D+0
201         DO I = 2*N+13*N
202            WORK( I ) = S( I-2*N ) * WORK( I-2*N ) - AVG
203         END DO
204         CALL DLASSQ( N, WORK( 2*N+1 ), 1SCALE, SUMSQ )
205         STD = SCALE * SQRT( SUMSQ / N )
206 
207         IF ( STD .LT. TOL * AVG ) GOTO 999
208 
209         DO I = 1, N
210           T = ABS( A( I, I ) )
211           SI = S( I )
212           C2 = ( N-1 ) * T
213           C1 = ( N-2 ) * ( WORK( I ) - T*SI )
214           C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
215           D = C1*C1 - 4*C0*C2
216 
217           IF ( D .LE. 0 ) THEN
218             INFO = -1
219             RETURN
220           END IF
221           SI = -2*C0 / ( C1 + SQRT( D ) )
222 
223           D = SI - S( I )
224           U = ZERO
225           IF ( UP ) THEN
226             DO J = 1, I
227               T = ABS( A( J, I ) )
228               U = U + S( J )*T
229               WORK( J ) = WORK( J ) + D*T
230             END DO
231             DO J = I+1,N
232               T = ABS( A( I, J ) )
233               U = U + S( J )*T
234               WORK( J ) = WORK( J ) + D*T
235             END DO
236           ELSE
237             DO J = 1, I
238               T = ABS( A( I, J ) )
239               U = U + S( J )*T
240               WORK( J ) = WORK( J ) + D*T
241             END DO
242             DO J = I+1,N
243               T = ABS( A( J, I ) )
244               U = U + S( J )*T
245               WORK( J ) = WORK( J ) + D*T
246             END DO
247           END IF
248 
249           AVG = AVG + ( U + WORK( I ) ) * D / N
250           S( I ) = SI
251 
252         END DO
253 
254       END DO
255 
256  999  CONTINUE
257 
258       SMLNUM = DLAMCH( 'SAFEMIN' )
259       BIGNUM = ONE / SMLNUM
260       SMIN = BIGNUM
261       SMAX = ZERO
262       T = ONE / SQRT(AVG)
263       BASE = DLAMCH( 'B' )
264       U = ONE / LOG( BASE )
265       DO I = 1, N
266         S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
267         SMIN = MIN( SMIN, S( I ) )
268         SMAX = MAX( SMAX, S( I ) )
269       END DO
270       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
271 *
272       END