1       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
  2      $                   LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, LDA, LIWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
 22 *  real symmetric matrix A. If eigenvectors are desired, it uses a
 23 *  divide and conquer algorithm.
 24 *
 25 *  The divide and conquer algorithm makes very mild assumptions about
 26 *  floating point arithmetic. It will work on machines with a guard
 27 *  digit in add/subtract, or on those binary machines without guard
 28 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 29 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 30 *  without guard digits, but we know of none.
 31 *
 32 *  Because of large use of BLAS of level 3, DSYEVD needs N**2 more
 33 *  workspace than DSYEVX.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  JOBZ    (input) CHARACTER*1
 39 *          = 'N':  Compute eigenvalues only;
 40 *          = 'V':  Compute eigenvalues and eigenvectors.
 41 *
 42 *  UPLO    (input) CHARACTER*1
 43 *          = 'U':  Upper triangle of A is stored;
 44 *          = 'L':  Lower triangle of A is stored.
 45 *
 46 *  N       (input) INTEGER
 47 *          The order of the matrix A.  N >= 0.
 48 *
 49 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
 50 *          On entry, the symmetric matrix A.  If UPLO = 'U', the
 51 *          leading N-by-N upper triangular part of A contains the
 52 *          upper triangular part of the matrix A.  If UPLO = 'L',
 53 *          the leading N-by-N lower triangular part of A contains
 54 *          the lower triangular part of the matrix A.
 55 *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 56 *          orthonormal eigenvectors of the matrix A.
 57 *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 58 *          or the upper triangle (if UPLO='U') of A, including the
 59 *          diagonal, is destroyed.
 60 *
 61 *  LDA     (input) INTEGER
 62 *          The leading dimension of the array A.  LDA >= max(1,N).
 63 *
 64 *  W       (output) DOUBLE PRECISION array, dimension (N)
 65 *          If INFO = 0, the eigenvalues in ascending order.
 66 *
 67 *  WORK    (workspace/output) DOUBLE PRECISION array,
 68 *                                         dimension (LWORK)
 69 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 70 *
 71 *  LWORK   (input) INTEGER
 72 *          The dimension of the array WORK.
 73 *          If N <= 1,               LWORK must be at least 1.
 74 *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
 75 *          If JOBZ = 'V' and N > 1, LWORK must be at least
 76 *                                                1 + 6*N + 2*N**2.
 77 *
 78 *          If LWORK = -1, then a workspace query is assumed; the routine
 79 *          only calculates the optimal sizes of the WORK and IWORK
 80 *          arrays, returns these values as the first entries of the WORK
 81 *          and IWORK arrays, and no error message related to LWORK or
 82 *          LIWORK is issued by XERBLA.
 83 *
 84 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
 85 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 86 *
 87 *  LIWORK  (input) INTEGER
 88 *          The dimension of the array IWORK.
 89 *          If N <= 1,                LIWORK must be at least 1.
 90 *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
 91 *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 92 *
 93 *          If LIWORK = -1, then a workspace query is assumed; the
 94 *          routine only calculates the optimal sizes of the WORK and
 95 *          IWORK arrays, returns these values as the first entries of
 96 *          the WORK and IWORK arrays, and no error message related to
 97 *          LWORK or LIWORK is issued by XERBLA.
 98 *
 99 *  INFO    (output) INTEGER
100 *          = 0:  successful exit
101 *          < 0:  if INFO = -i, the i-th argument had an illegal value
102 *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
103 *                to converge; i off-diagonal elements of an intermediate
104 *                tridiagonal form did not converge to zero;
105 *                if INFO = i and JOBZ = 'V', then the algorithm failed
106 *                to compute an eigenvalue while working on the submatrix
107 *                lying in rows and columns INFO/(N+1) through
108 *                mod(INFO,N+1).
109 *
110 *  Further Details
111 *  ===============
112 *
113 *  Based on contributions by
114 *     Jeff Rutter, Computer Science Division, University of California
115 *     at Berkeley, USA
116 *  Modified by Francoise Tisseur, University of Tennessee.
117 *
118 *  Modified description of INFO. Sven, 16 Feb 05.
119 *  =====================================================================
120 *
121 *     .. Parameters ..
122       DOUBLE PRECISION   ZERO, ONE
123       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
124 *     ..
125 *     .. Local Scalars ..
126 *
127       LOGICAL            LOWER, LQUERY, WANTZ
128       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
129      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
130       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
131      $                   SMLNUM
132 *     ..
133 *     .. External Functions ..
134       LOGICAL            LSAME
135       INTEGER            ILAENV
136       DOUBLE PRECISION   DLAMCH, DLANSY
137       EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
138 *     ..
139 *     .. External Subroutines ..
140       EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
141      $                   DSYTRD, XERBLA
142 *     ..
143 *     .. Intrinsic Functions ..
144       INTRINSIC          MAXSQRT
145 *     ..
146 *     .. Executable Statements ..
147 *
148 *     Test the input parameters.
149 *
150       WANTZ = LSAME( JOBZ, 'V' )
151       LOWER = LSAME( UPLO, 'L' )
152       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
153 *
154       INFO = 0
155       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
156          INFO = -1
157       ELSE IF.NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
158          INFO = -2
159       ELSE IF( N.LT.0 ) THEN
160          INFO = -3
161       ELSE IF( LDA.LT.MAX1, N ) ) THEN
162          INFO = -5
163       END IF
164 *
165       IF( INFO.EQ.0 ) THEN
166          IF( N.LE.1 ) THEN
167             LIWMIN = 1
168             LWMIN = 1
169             LOPT = LWMIN
170             LIOPT = LIWMIN
171          ELSE
172             IF( WANTZ ) THEN
173                LIWMIN = 3 + 5*N
174                LWMIN = 1 + 6*+ 2*N**2
175             ELSE
176                LIWMIN = 1
177                LWMIN = 2*+ 1
178             END IF
179             LOPT = MAX( LWMIN, 2*+
180      $                  ILAENV( 1'DSYTRD', UPLO, N, -1-1-1 ) )
181             LIOPT = LIWMIN
182          END IF
183          WORK( 1 ) = LOPT
184          IWORK( 1 ) = LIOPT
185 *
186          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
187             INFO = -8
188          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
189             INFO = -10
190          END IF
191       END IF
192 *
193       IF( INFO.NE.0 ) THEN
194          CALL XERBLA( 'DSYEVD'-INFO )
195          RETURN
196       ELSE IF( LQUERY ) THEN
197          RETURN
198       END IF
199 *
200 *     Quick return if possible
201 *
202       IF( N.EQ.0 )
203      $   RETURN
204 *
205       IF( N.EQ.1 ) THEN
206          W( 1 ) = A( 11 )
207          IF( WANTZ )
208      $      A( 11 ) = ONE
209          RETURN
210       END IF
211 *
212 *     Get machine constants.
213 *
214       SAFMIN = DLAMCH( 'Safe minimum' )
215       EPS = DLAMCH( 'Precision' )
216       SMLNUM = SAFMIN / EPS
217       BIGNUM = ONE / SMLNUM
218       RMIN = SQRT( SMLNUM )
219       RMAX = SQRT( BIGNUM )
220 *
221 *     Scale matrix to allowable range, if necessary.
222 *
223       ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
224       ISCALE = 0
225       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
226          ISCALE = 1
227          SIGMA = RMIN / ANRM
228       ELSE IF( ANRM.GT.RMAX ) THEN
229          ISCALE = 1
230          SIGMA = RMAX / ANRM
231       END IF
232       IF( ISCALE.EQ.1 )
233      $   CALL DLASCL( UPLO, 00, ONE, SIGMA, N, N, A, LDA, INFO )
234 *
235 *     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
236 *
237       INDE = 1
238       INDTAU = INDE + N
239       INDWRK = INDTAU + N
240       LLWORK = LWORK - INDWRK + 1
241       INDWK2 = INDWRK + N*N
242       LLWRK2 = LWORK - INDWK2 + 1
243 *
244       CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
245      $             WORK( INDWRK ), LLWORK, IINFO )
246       LOPT = 2*+ WORK( INDWRK )
247 *
248 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
249 *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
250 *     tridiagonal matrix, then call DORMTR to multiply it by the
251 *     Householder transformations stored in A.
252 *
253       IF.NOT.WANTZ ) THEN
254          CALL DSTERF( N, W, WORK( INDE ), INFO )
255       ELSE
256          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
257      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
258          CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
259      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
260          CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
261          LOPT = MAX( LOPT, 1+6*N+2*N**2 )
262       END IF
263 *
264 *     If matrix was scaled, then rescale eigenvalues appropriately.
265 *
266       IF( ISCALE.EQ.1 )
267      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
268 *
269       WORK( 1 ) = LOPT
270       IWORK( 1 ) = LIOPT
271 *
272       RETURN
273 *
274 *     End of DSYEVD
275 *
276       END