1       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, ITYPE, LDA, LDB, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DSYGS2 reduces a real symmetric-definite generalized eigenproblem
 20 *  to standard form.
 21 *
 22 *  If ITYPE = 1, the problem is A*x = lambda*B*x,
 23 *  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 24 *
 25 *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 26 *  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
 27 *
 28 *  B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  ITYPE   (input) INTEGER
 34 *          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 35 *          = 2 or 3: compute U*A*U**T or L**T *A*L.
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the upper or lower triangular part of the
 39 *          symmetric matrix A is stored, and how B has been factorized.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrices A and B.  N >= 0.
 45 *
 46 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 47 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 48 *          n by n upper triangular part of A contains the upper
 49 *          triangular part of the matrix A, and the strictly lower
 50 *          triangular part of A is not referenced.  If UPLO = 'L', the
 51 *          leading n by n lower triangular part of A contains the lower
 52 *          triangular part of the matrix A, and the strictly upper
 53 *          triangular part of A is not referenced.
 54 *
 55 *          On exit, if INFO = 0, the transformed matrix, stored in the
 56 *          same format as A.
 57 *
 58 *  LDA     (input) INTEGER
 59 *          The leading dimension of the array A.  LDA >= max(1,N).
 60 *
 61 *  B       (input) DOUBLE PRECISION array, dimension (LDB,N)
 62 *          The triangular factor from the Cholesky factorization of B,
 63 *          as returned by DPOTRF.
 64 *
 65 *  LDB     (input) INTEGER
 66 *          The leading dimension of the array B.  LDB >= max(1,N).
 67 *
 68 *  INFO    (output) INTEGER
 69 *          = 0:  successful exit.
 70 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 71 *
 72 *  =====================================================================
 73 *
 74 *     .. Parameters ..
 75       DOUBLE PRECISION   ONE, HALF
 76       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
 77 *     ..
 78 *     .. Local Scalars ..
 79       LOGICAL            UPPER
 80       INTEGER            K
 81       DOUBLE PRECISION   AKK, BKK, CT
 82 *     ..
 83 *     .. External Subroutines ..
 84       EXTERNAL           DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
 85 *     ..
 86 *     .. Intrinsic Functions ..
 87       INTRINSIC          MAX
 88 *     ..
 89 *     .. External Functions ..
 90       LOGICAL            LSAME
 91       EXTERNAL           LSAME
 92 *     ..
 93 *     .. Executable Statements ..
 94 *
 95 *     Test the input parameters.
 96 *
 97       INFO = 0
 98       UPPER = LSAME( UPLO, 'U' )
 99       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
100          INFO = -1
101       ELSE IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
102          INFO = -2
103       ELSE IF( N.LT.0 ) THEN
104          INFO = -3
105       ELSE IF( LDA.LT.MAX1, N ) ) THEN
106          INFO = -5
107       ELSE IF( LDB.LT.MAX1, N ) ) THEN
108          INFO = -7
109       END IF
110       IF( INFO.NE.0 ) THEN
111          CALL XERBLA( 'DSYGS2'-INFO )
112          RETURN
113       END IF
114 *
115       IF( ITYPE.EQ.1 ) THEN
116          IF( UPPER ) THEN
117 *
118 *           Compute inv(U**T)*A*inv(U)
119 *
120             DO 10 K = 1, N
121 *
122 *              Update the upper triangle of A(k:n,k:n)
123 *
124                AKK = A( K, K )
125                BKK = B( K, K )
126                AKK = AKK / BKK**2
127                A( K, K ) = AKK
128                IF( K.LT.N ) THEN
129                   CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
130                   CT = -HALF*AKK
131                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
132      $                        LDA )
133                   CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
134      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
135                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
136      $                        LDA )
137                   CALL DTRSV( UPLO, 'Transpose''Non-unit', N-K,
138      $                        B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
139                END IF
140    10       CONTINUE
141          ELSE
142 *
143 *           Compute inv(L)*A*inv(L**T)
144 *
145             DO 20 K = 1, N
146 *
147 *              Update the lower triangle of A(k:n,k:n)
148 *
149                AKK = A( K, K )
150                BKK = B( K, K )
151                AKK = AKK / BKK**2
152                A( K, K ) = AKK
153                IF( K.LT.N ) THEN
154                   CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
155                   CT = -HALF*AKK
156                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
157                   CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
158      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
159                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
160                   CALL DTRSV( UPLO, 'No transpose''Non-unit', N-K,
161      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
162                END IF
163    20       CONTINUE
164          END IF
165       ELSE
166          IF( UPPER ) THEN
167 *
168 *           Compute U*A*U**T
169 *
170             DO 30 K = 1, N
171 *
172 *              Update the upper triangle of A(1:k,1:k)
173 *
174                AKK = A( K, K )
175                BKK = B( K, K )
176                CALL DTRMV( UPLO, 'No transpose''Non-unit', K-1, B,
177      $                     LDB, A( 1, K ), 1 )
178                CT = HALF*AKK
179                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
180                CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
181      $                     A, LDA )
182                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
183                CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
184                A( K, K ) = AKK*BKK**2
185    30       CONTINUE
186          ELSE
187 *
188 *           Compute L**T *A*L
189 *
190             DO 40 K = 1, N
191 *
192 *              Update the lower triangle of A(1:k,1:k)
193 *
194                AKK = A( K, K )
195                BKK = B( K, K )
196                CALL DTRMV( UPLO, 'Transpose''Non-unit', K-1, B, LDB,
197      $                     A( K, 1 ), LDA )
198                CT = HALF*AKK
199                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
200                CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
201      $                     LDB, A, LDA )
202                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
203                CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
204                A( K, K ) = AKK*BKK**2
205    40       CONTINUE
206          END IF
207       END IF
208       RETURN
209 *
210 *     End of DSYGS2
211 *
212       END