1       SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *  -- Written by Julie Langou of the Univ. of TN    --
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          UPLO
 12       INTEGER            INFO, LDA, N, NB
 13 *     ..
 14 *     .. Array Arguments ..
 15       INTEGER            IPIV( * )
 16       DOUBLE PRECISION   A( LDA, * ), WORK( N+NB+1,* )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DSYTRI2X computes the inverse of a real symmetric indefinite matrix
 23 *  A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 24 *  DSYTRF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  UPLO    (input) CHARACTER*1
 30 *          Specifies whether the details of the factorization are stored
 31 *          as an upper or lower triangular matrix.
 32 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 33 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 39 *          On entry, the NNB diagonal matrix D and the multipliers
 40 *          used to obtain the factor U or L as computed by DSYTRF.
 41 *
 42 *          On exit, if INFO = 0, the (symmetric) inverse of the original
 43 *          matrix.  If UPLO = 'U', the upper triangular part of the
 44 *          inverse is formed and the part of A below the diagonal is not
 45 *          referenced; if UPLO = 'L' the lower triangular part of the
 46 *          inverse is formed and the part of A above the diagonal is
 47 *          not referenced.
 48 *
 49 *  LDA     (input) INTEGER
 50 *          The leading dimension of the array A.  LDA >= max(1,N).
 51 *
 52 *  IPIV    (input) INTEGER array, dimension (N)
 53 *          Details of the interchanges and the NNB structure of D
 54 *          as determined by DSYTRF.
 55 *
 56 *  WORK    (workspace) DOUBLE PRECISION array, dimension (N+NNB+1,NNB+3)
 57 *
 58 *  NB      (input) INTEGER
 59 *          Block size
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0: successful exit
 63 *          < 0: if INFO = -i, the i-th argument had an illegal value
 64 *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 65 *               inverse could not be computed.
 66 *
 67 *  =====================================================================
 68 *
 69 *     .. Parameters ..
 70       DOUBLE PRECISION   ONE, ZERO
 71       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 72 *     ..
 73 *     .. Local Scalars ..
 74       LOGICAL            UPPER
 75       INTEGER            I, IINFO, IP, K, CUT, NNB
 76       INTEGER            COUNT
 77       INTEGER            J, U11, INVD
 78 
 79       DOUBLE PRECISION   AK, AKKP1, AKP1, D, T
 80       DOUBLE PRECISION   U01_I_J, U01_IP1_J
 81       DOUBLE PRECISION   U11_I_J, U11_IP1_J
 82 *     ..
 83 *     .. External Functions ..
 84       LOGICAL            LSAME
 85       EXTERNAL           LSAME
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           DSYCONV, XERBLA, DTRTRI
 89       EXTERNAL           DGEMM, DTRMM, DSYSWAPR
 90 *     ..
 91 *     .. Intrinsic Functions ..
 92       INTRINSIC          MAX
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     Test the input parameters.
 97 *
 98       INFO = 0
 99       UPPER = LSAME( UPLO, 'U' )
100       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
101          INFO = -1
102       ELSE IF( N.LT.0 ) THEN
103          INFO = -2
104       ELSE IF( LDA.LT.MAX1, N ) ) THEN
105          INFO = -4
106       END IF
107 *
108 *     Quick return if possible
109 *
110 *
111       IF( INFO.NE.0 ) THEN
112          CALL XERBLA( 'DSYTRI2X'-INFO )
113          RETURN
114       END IF
115       IF( N.EQ.0 )
116      $   RETURN
117 *
118 *     Convert A
119 *     Workspace got Non-diag elements of D
120 *
121       CALL DSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
122 *
123 *     Check that the diagonal matrix D is nonsingular.
124 *
125       IF( UPPER ) THEN
126 *
127 *        Upper triangular storage: examine D from bottom to top
128 *
129          DO INFO = N, 1-1
130             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
131      $         RETURN
132          END DO
133       ELSE
134 *
135 *        Lower triangular storage: examine D from top to bottom.
136 *
137          DO INFO = 1, N
138             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
139      $         RETURN
140          END DO
141       END IF
142       INFO = 0
143 *
144 *  Splitting Workspace
145 *     U01 is a block (N,NB+1) 
146 *     The first element of U01 is in WORK(1,1)
147 *     U11 is a block (NB+1,NB+1)
148 *     The first element of U11 is in WORK(N+1,1)
149       U11 = N
150 *     INVD is a block (N,2)
151 *     The first element of INVD is in WORK(1,INVD)
152       INVD = NB+2
153 
154       IF( UPPER ) THEN
155 *
156 *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
157 *
158         CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
159 *
160 *       inv(D) and inv(D)*inv(U)
161 
162         K=1
163         DO WHILE ( K .LE. N )
164          IF( IPIV( K ).GT.0 ) THEN
165 *           1 x 1 diagonal NNB
166              WORK(K,INVD) = ONE /  A( K, K )
167              WORK(K,INVD+1= 0
168             K=K+1
169          ELSE
170 *           2 x 2 diagonal NNB
171              T = WORK(K+1,1)
172              AK = A( K, K ) / T
173              AKP1 = A( K+1, K+1 ) / T
174              AKKP1 = WORK(K+1,1)  / T
175              D = T*( AK*AKP1-ONE )
176              WORK(K,INVD) = AKP1 / D
177              WORK(K+1,INVD+1= AK / D
178              WORK(K,INVD+1= -AKKP1 / D  
179              WORK(K+1,INVD) = -AKKP1 / D  
180             K=K+2
181          END IF
182         END DO
183 *
184 *       inv(U**T) = (inv(U))**T
185 *
186 *       inv(U**T)*inv(D)*inv(U)
187 *
188         CUT=N
189         DO WHILE (CUT .GT. 0)
190            NNB=NB
191            IF (CUT .LE. NNB) THEN
192               NNB=CUT
193            ELSE
194               COUNT = 0
195 *             count negative elements, 
196               DO I=CUT+1-NNB,CUT
197                   IF (IPIV(I) .LT. 0COUNT=COUNT+1
198               END DO
199 *             need a even number for a clear cut
200               IF (MOD(COUNT,2.EQ. 1) NNB=NNB+1
201            END IF
202 
203            CUT=CUT-NNB
204 *
205 *          U01 Block 
206 *
207            DO I=1,CUT
208              DO J=1,NNB
209               WORK(I,J)=A(I,CUT+J)
210              END DO
211            END DO
212 *
213 *          U11 Block
214 *
215            DO I=1,NNB
216              WORK(U11+I,I)=ONE
217              DO J=1,I-1
218                 WORK(U11+I,J)=ZERO
219              END DO
220              DO J=I+1,NNB
221                 WORK(U11+I,J)=A(CUT+I,CUT+J)
222              END DO
223            END DO
224 *
225 *          invD*U01
226 *
227            I=1
228            DO WHILE (I .LE. CUT)
229              IF (IPIV(I) > 0THEN
230                 DO J=1,NNB
231                     WORK(I,J)=WORK(I,INVD)*WORK(I,J)
232                 END DO
233                 I=I+1
234              ELSE
235                 DO J=1,NNB
236                    U01_I_J = WORK(I,J)
237                    U01_IP1_J = WORK(I+1,J)
238                    WORK(I,J)=WORK(I,INVD)*U01_I_J+
239      $                      WORK(I,INVD+1)*U01_IP1_J
240                    WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
241      $                      WORK(I+1,INVD+1)*U01_IP1_J
242                 END DO
243                 I=I+2
244              END IF
245            END DO
246 *
247 *        invD1*U11
248 *
249            I=1
250            DO WHILE (I .LE. NNB)
251              IF (IPIV(CUT+I) > 0THEN
252                 DO J=I,NNB
253                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
254                 END DO
255                 I=I+1
256              ELSE
257                 DO J=I,NNB
258                    U11_I_J = WORK(U11+I,J)
259                    U11_IP1_J = WORK(U11+I+1,J)
260                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
261      $                      WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
262                 WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
263      $                      WORK(CUT+I+1,INVD+1)*U11_IP1_J
264                 END DO
265                 I=I+2
266              END IF
267            END DO
268 *    
269 *       U11**T*invD1*U11->U11
270 *
271         CALL DTRMM('L','U','T','U',NNB, NNB,
272      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
273 *
274          DO I=1,NNB
275             DO J=I,NNB
276               A(CUT+I,CUT+J)=WORK(U11+I,J)
277             END DO
278          END DO         
279 *
280 *          U01**T*invD*U01->A(CUT+I,CUT+J)
281 *
282          CALL DGEMM('T','N',NNB,NNB,CUT,ONE,A(1,CUT+1),LDA,
283      $              WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
284         
285 *
286 *        U11 =  U11**T*invD1*U11 + U01**T*invD*U01
287 *
288          DO I=1,NNB
289             DO J=I,NNB
290               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
291             END DO
292          END DO
293 *
294 *        U01 =  U00**T*invD0*U01
295 *
296          CALL DTRMM('L',UPLO,'T','U',CUT, NNB,
297      $             ONE,A,LDA,WORK,N+NB+1)
298 
299 *
300 *        Update U01
301 *
302          DO I=1,CUT
303            DO J=1,NNB
304             A(I,CUT+J)=WORK(I,J)
305            END DO
306          END DO
307 *
308 *      Next Block
309 *
310        END DO
311 *
312 *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
313 *  
314             I=1
315             DO WHILE ( I .LE. N )
316                IF( IPIV(I) .GT. 0 ) THEN
317                   IP=IPIV(I)
318                  IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
319                  IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
320                ELSE
321                  IP=-IPIV(I)
322                  I=I+1
323                  IF ( (I-1.LT. IP) 
324      $                  CALL DSYSWAPR( UPLO, N, A, LDA, I-1 ,IP )
325                  IF ( (I-1.GT. IP) 
326      $                  CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I-1 )
327               ENDIF
328                I=I+1
329             END DO
330       ELSE
331 *
332 *        LOWER...
333 *
334 *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
335 *
336          CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO )
337 *
338 *       inv(D) and inv(D)*inv(U)
339 
340         K=N
341         DO WHILE ( K .GE. 1 )
342          IF( IPIV( K ).GT.0 ) THEN
343 *           1 x 1 diagonal NNB
344              WORK(K,INVD) = ONE /  A( K, K )
345              WORK(K,INVD+1= 0
346             K=K-1
347          ELSE
348 *           2 x 2 diagonal NNB
349              T = WORK(K-1,1)
350              AK = A( K-1, K-1 ) / T
351              AKP1 = A( K, K ) / T
352              AKKP1 = WORK(K-1,1/ T
353              D = T*( AK*AKP1-ONE )
354              WORK(K-1,INVD) = AKP1 / D
355              WORK(K,INVD) = AK / D
356              WORK(K,INVD+1= -AKKP1 / D  
357              WORK(K-1,INVD+1= -AKKP1 / D  
358             K=K-2
359          END IF
360         END DO
361 *
362 *       inv(U**T) = (inv(U))**T
363 *
364 *       inv(U**T)*inv(D)*inv(U)
365 *
366         CUT=0
367         DO WHILE (CUT .LT. N)
368            NNB=NB
369            IF (CUT + NNB .GT. N) THEN
370               NNB=N-CUT
371            ELSE
372               COUNT = 0
373 *             count negative elements, 
374               DO I=CUT+1,CUT+NNB
375                   IF (IPIV(I) .LT. 0COUNT=COUNT+1
376               END DO
377 *             need a even number for a clear cut
378               IF (MOD(COUNT,2.EQ. 1) NNB=NNB+1
379            END IF
380 *     L21 Block
381            DO I=1,N-CUT-NNB
382              DO J=1,NNB
383               WORK(I,J)=A(CUT+NNB+I,CUT+J)
384              END DO
385            END DO
386 *     L11 Block
387            DO I=1,NNB
388              WORK(U11+I,I)=ONE
389              DO J=I+1,NNB
390                 WORK(U11+I,J)=ZERO
391              END DO
392              DO J=1,I-1
393                 WORK(U11+I,J)=A(CUT+I,CUT+J)
394              END DO
395            END DO
396 *
397 *          invD*L21
398 *
399            I=N-CUT-NNB
400            DO WHILE (I .GE. 1)
401              IF (IPIV(CUT+NNB+I) > 0THEN
402                 DO J=1,NNB
403                     WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
404                 END DO
405                 I=I-1
406              ELSE
407                 DO J=1,NNB
408                    U01_I_J = WORK(I,J)
409                    U01_IP1_J = WORK(I-1,J)
410                    WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
411      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
412                    WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
413      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
414                 END DO
415                 I=I-2
416              END IF
417            END DO
418 *
419 *        invD1*L11
420 *
421            I=NNB
422            DO WHILE (I .GE. 1)
423              IF (IPIV(CUT+I) > 0THEN
424                 DO J=1,NNB
425                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
426                 END DO
427                 I=I-1
428              ELSE
429                 DO J=1,NNB
430                    U11_I_J = WORK(U11+I,J)
431                    U11_IP1_J = WORK(U11+I-1,J)
432                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
433      $                      WORK(CUT+I,INVD+1)*U11_IP1_J
434                 WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
435      $                      WORK(CUT+I-1,INVD)*U11_IP1_J
436                 END DO
437                 I=I-2
438              END IF
439            END DO
440 *    
441 *       L11**T*invD1*L11->L11
442 *
443         CALL DTRMM('L',UPLO,'T','U',NNB, NNB,
444      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
445 
446 *
447          DO I=1,NNB
448             DO J=1,I
449               A(CUT+I,CUT+J)=WORK(U11+I,J)
450             END DO
451          END DO
452 *
453         IF ( (CUT+NNB) .LT. N ) THEN
454 *
455 *          L21**T*invD2*L21->A(CUT+I,CUT+J)
456 *
457          CALL DGEMM('T','N',NNB,NNB,N-NNB-CUT,ONE,A(CUT+NNB+1,CUT+1)
458      $             ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
459        
460 *
461 *        L11 =  L11**T*invD1*L11 + U01**T*invD*U01
462 *
463          DO I=1,NNB
464             DO J=1,I
465               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
466             END DO
467          END DO
468 *
469 *        L01 =  L22**T*invD2*L21
470 *
471          CALL DTRMM('L',UPLO,'T','U', N-NNB-CUT, NNB,
472      $             ONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
473 *
474 *      Update L21
475 *
476          DO I=1,N-CUT-NNB
477            DO J=1,NNB
478               A(CUT+NNB+I,CUT+J)=WORK(I,J)
479            END DO
480          END DO
481 
482        ELSE
483 *
484 *        L11 =  L11**T*invD1*L11
485 *
486          DO I=1,NNB
487             DO J=1,I
488               A(CUT+I,CUT+J)=WORK(U11+I,J)
489             END DO
490          END DO
491        END IF
492 *
493 *      Next Block
494 *
495            CUT=CUT+NNB
496        END DO
497 *
498 *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
499 
500             I=N
501             DO WHILE ( I .GE. 1 )
502                IF( IPIV(I) .GT. 0 ) THEN
503                   IP=IPIV(I)
504                  IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP  )
505                  IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP ,I )
506                ELSE
507                  IP=-IPIV(I)
508                  IF ( I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I ,IP )
509                  IF ( I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP, I )
510                  I=I-1
511                ENDIF
512                I=I-1
513             END DO
514       END IF
515 *
516       RETURN
517 *
518 *     End of DSYTRI2X
519 *
520       END
521