1       SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, LDB, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DSYTRS solves a system of linear equations A*X = B with a real
 21 *  symmetric matrix A using the factorization A = U*D*U**T or
 22 *  A = L*D*L**T computed by DSYTRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  NRHS    (input) INTEGER
 37 *          The number of right hand sides, i.e., the number of columns
 38 *          of the matrix B.  NRHS >= 0.
 39 *
 40 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 41 *          The block diagonal matrix D and the multipliers used to
 42 *          obtain the factor U or L as computed by DSYTRF.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,N).
 46 *
 47 *  IPIV    (input) INTEGER array, dimension (N)
 48 *          Details of the interchanges and the block structure of D
 49 *          as determined by DSYTRF.
 50 *
 51 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 52 *          On entry, the right hand side matrix B.
 53 *          On exit, the solution matrix X.
 54 *
 55 *  LDB     (input) INTEGER
 56 *          The leading dimension of the array B.  LDB >= max(1,N).
 57 *
 58 *  INFO    (output) INTEGER
 59 *          = 0:  successful exit
 60 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 61 *
 62 *  =====================================================================
 63 *
 64 *     .. Parameters ..
 65       DOUBLE PRECISION   ONE
 66       PARAMETER          ( ONE = 1.0D+0 )
 67 *     ..
 68 *     .. Local Scalars ..
 69       LOGICAL            UPPER
 70       INTEGER            J, K, KP
 71       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
 72 *     ..
 73 *     .. External Functions ..
 74       LOGICAL            LSAME
 75       EXTERNAL           LSAME
 76 *     ..
 77 *     .. External Subroutines ..
 78       EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
 79 *     ..
 80 *     .. Intrinsic Functions ..
 81       INTRINSIC          MAX
 82 *     ..
 83 *     .. Executable Statements ..
 84 *
 85       INFO = 0
 86       UPPER = LSAME( UPLO, 'U' )
 87       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 88          INFO = -1
 89       ELSE IF( N.LT.0 ) THEN
 90          INFO = -2
 91       ELSE IF( NRHS.LT.0 ) THEN
 92          INFO = -3
 93       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 94          INFO = -5
 95       ELSE IF( LDB.LT.MAX1, N ) ) THEN
 96          INFO = -8
 97       END IF
 98       IF( INFO.NE.0 ) THEN
 99          CALL XERBLA( 'DSYTRS'-INFO )
100          RETURN
101       END IF
102 *
103 *     Quick return if possible
104 *
105       IF( N.EQ.0 .OR. NRHS.EQ.0 )
106      $   RETURN
107 *
108       IF( UPPER ) THEN
109 *
110 *        Solve A*X = B, where A = U*D*U**T.
111 *
112 *        First solve U*D*X = B, overwriting B with X.
113 *
114 *        K is the main loop index, decreasing from N to 1 in steps of
115 *        1 or 2, depending on the size of the diagonal blocks.
116 *
117          K = N
118    10    CONTINUE
119 *
120 *        If K < 1, exit from loop.
121 *
122          IF( K.LT.1 )
123      $      GO TO 30
124 *
125          IF( IPIV( K ).GT.0 ) THEN
126 *
127 *           1 x 1 diagonal block
128 *
129 *           Interchange rows K and IPIV(K).
130 *
131             KP = IPIV( K )
132             IF( KP.NE.K )
133      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
134 *
135 *           Multiply by inv(U(K)), where U(K) is the transformation
136 *           stored in column K of A.
137 *
138             CALL DGER( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
139      $                 B( 11 ), LDB )
140 *
141 *           Multiply by the inverse of the diagonal block.
142 *
143             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
144             K = K - 1
145          ELSE
146 *
147 *           2 x 2 diagonal block
148 *
149 *           Interchange rows K-1 and -IPIV(K).
150 *
151             KP = -IPIV( K )
152             IF( KP.NE.K-1 )
153      $         CALL DSWAP( NRHS, B( K-11 ), LDB, B( KP, 1 ), LDB )
154 *
155 *           Multiply by inv(U(K)), where U(K) is the transformation
156 *           stored in columns K-1 and K of A.
157 *
158             CALL DGER( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
159      $                 B( 11 ), LDB )
160             CALL DGER( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-11 ),
161      $                 LDB, B( 11 ), LDB )
162 *
163 *           Multiply by the inverse of the diagonal block.
164 *
165             AKM1K = A( K-1, K )
166             AKM1 = A( K-1, K-1 ) / AKM1K
167             AK = A( K, K ) / AKM1K
168             DENOM = AKM1*AK - ONE
169             DO 20 J = 1, NRHS
170                BKM1 = B( K-1, J ) / AKM1K
171                BK = B( K, J ) / AKM1K
172                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
173                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
174    20       CONTINUE
175             K = K - 2
176          END IF
177 *
178          GO TO 10
179    30    CONTINUE
180 *
181 *        Next solve U**T *X = B, overwriting B with X.
182 *
183 *        K is the main loop index, increasing from 1 to N in steps of
184 *        1 or 2, depending on the size of the diagonal blocks.
185 *
186          K = 1
187    40    CONTINUE
188 *
189 *        If K > N, exit from loop.
190 *
191          IF( K.GT.N )
192      $      GO TO 50
193 *
194          IF( IPIV( K ).GT.0 ) THEN
195 *
196 *           1 x 1 diagonal block
197 *
198 *           Multiply by inv(U**T(K)), where U(K) is the transformation
199 *           stored in column K of A.
200 *
201             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
202      $                  1, ONE, B( K, 1 ), LDB )
203 *
204 *           Interchange rows K and IPIV(K).
205 *
206             KP = IPIV( K )
207             IF( KP.NE.K )
208      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
209             K = K + 1
210          ELSE
211 *
212 *           2 x 2 diagonal block
213 *
214 *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
215 *           stored in columns K and K+1 of A.
216 *
217             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
218      $                  1, ONE, B( K, 1 ), LDB )
219             CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
220      $                  A( 1, K+1 ), 1, ONE, B( K+11 ), LDB )
221 *
222 *           Interchange rows K and -IPIV(K).
223 *
224             KP = -IPIV( K )
225             IF( KP.NE.K )
226      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
227             K = K + 2
228          END IF
229 *
230          GO TO 40
231    50    CONTINUE
232 *
233       ELSE
234 *
235 *        Solve A*X = B, where A = L*D*L**T.
236 *
237 *        First solve L*D*X = B, overwriting B with X.
238 *
239 *        K is the main loop index, increasing from 1 to N in steps of
240 *        1 or 2, depending on the size of the diagonal blocks.
241 *
242          K = 1
243    60    CONTINUE
244 *
245 *        If K > N, exit from loop.
246 *
247          IF( K.GT.N )
248      $      GO TO 80
249 *
250          IF( IPIV( K ).GT.0 ) THEN
251 *
252 *           1 x 1 diagonal block
253 *
254 *           Interchange rows K and IPIV(K).
255 *
256             KP = IPIV( K )
257             IF( KP.NE.K )
258      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
259 *
260 *           Multiply by inv(L(K)), where L(K) is the transformation
261 *           stored in column K of A.
262 *
263             IF( K.LT.N )
264      $         CALL DGER( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
265      $                    LDB, B( K+11 ), LDB )
266 *
267 *           Multiply by the inverse of the diagonal block.
268 *
269             CALL DSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
270             K = K + 1
271          ELSE
272 *
273 *           2 x 2 diagonal block
274 *
275 *           Interchange rows K+1 and -IPIV(K).
276 *
277             KP = -IPIV( K )
278             IF( KP.NE.K+1 )
279      $         CALL DSWAP( NRHS, B( K+11 ), LDB, B( KP, 1 ), LDB )
280 *
281 *           Multiply by inv(L(K)), where L(K) is the transformation
282 *           stored in columns K and K+1 of A.
283 *
284             IF( K.LT.N-1 ) THEN
285                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
286      $                    LDB, B( K+21 ), LDB )
287                CALL DGER( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
288      $                    B( K+11 ), LDB, B( K+21 ), LDB )
289             END IF
290 *
291 *           Multiply by the inverse of the diagonal block.
292 *
293             AKM1K = A( K+1, K )
294             AKM1 = A( K, K ) / AKM1K
295             AK = A( K+1, K+1 ) / AKM1K
296             DENOM = AKM1*AK - ONE
297             DO 70 J = 1, NRHS
298                BKM1 = B( K, J ) / AKM1K
299                BK = B( K+1, J ) / AKM1K
300                B( K, J ) = ( AK*BKM1-BK ) / DENOM
301                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
302    70       CONTINUE
303             K = K + 2
304          END IF
305 *
306          GO TO 60
307    80    CONTINUE
308 *
309 *        Next solve L**T *X = B, overwriting B with X.
310 *
311 *        K is the main loop index, decreasing from N to 1 in steps of
312 *        1 or 2, depending on the size of the diagonal blocks.
313 *
314          K = N
315    90    CONTINUE
316 *
317 *        If K < 1, exit from loop.
318 *
319          IF( K.LT.1 )
320      $      GO TO 100
321 *
322          IF( IPIV( K ).GT.0 ) THEN
323 *
324 *           1 x 1 diagonal block
325 *
326 *           Multiply by inv(L**T(K)), where L(K) is the transformation
327 *           stored in column K of A.
328 *
329             IF( K.LT.N )
330      $         CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+11 ),
331      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
332 *
333 *           Interchange rows K and IPIV(K).
334 *
335             KP = IPIV( K )
336             IF( KP.NE.K )
337      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
338             K = K - 1
339          ELSE
340 *
341 *           2 x 2 diagonal block
342 *
343 *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
344 *           stored in columns K-1 and K of A.
345 *
346             IF( K.LT.N ) THEN
347                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+11 ),
348      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
349                CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+11 ),
350      $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-11 ),
351      $                     LDB )
352             END IF
353 *
354 *           Interchange rows K and -IPIV(K).
355 *
356             KP = -IPIV( K )
357             IF( KP.NE.K )
358      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
359             K = K - 2
360          END IF
361 *
362          GO TO 90
363   100    CONTINUE
364       END IF
365 *
366       RETURN
367 *
368 *     End of DSYTRS
369 *
370       END