1       SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1)                                  --
  4 *
  5 *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
  6 *  -- April 2011                                                      ----
  7 *
  8 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  9 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          TRANSR, UPLO, DIAG
 13       INTEGER            INFO, N
 14 *     ..
 15 *     .. Array Arguments ..
 16       DOUBLE PRECISION   A( 0* )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DTFTRI computes the inverse of a triangular matrix A stored in RFP
 23 *  format.
 24 *
 25 *  This is a Level 3 BLAS version of the algorithm.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  TRANSR  (input) CHARACTER*1
 31 *          = 'N':  The Normal TRANSR of RFP A is stored;
 32 *          = 'T':  The Transpose TRANSR of RFP A is stored.
 33 *
 34 *  UPLO    (input) CHARACTER*1
 35 *          = 'U':  A is upper triangular;
 36 *          = 'L':  A is lower triangular.
 37 *
 38 *  DIAG    (input) CHARACTER*1
 39 *          = 'N':  A is non-unit triangular;
 40 *          = 'U':  A is unit triangular.
 41 *
 42 *  N       (input) INTEGER
 43 *          The order of the matrix A.  N >= 0.
 44 *
 45 *  A       (input/output) DOUBLE PRECISION  array, dimension (0:nt-1);
 46 *          nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian
 47 *          Positive Definite matrix A in RFP format. RFP format is
 48 *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
 49 *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
 50 *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
 51 *          the transpose of RFP A as defined when
 52 *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
 53 *          follows: If UPLO = 'U' the RFP A contains the nt elements of
 54 *          upper packed A; If UPLO = 'L' the RFP A contains the nt
 55 *          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
 56 *          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
 57 *          even and N is odd. See the Note below for more details.
 58 *
 59 *          On exit, the (triangular) inverse of the original matrix, in
 60 *          the same storage format.
 61 *
 62 *  INFO    (output) INTEGER
 63 *          = 0: successful exit
 64 *          < 0: if INFO = -i, the i-th argument had an illegal value
 65 *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
 66 *               matrix is singular and its inverse can not be computed.
 67 *
 68 *  Further Details
 69 *  ===============
 70 *
 71 *  We first consider Rectangular Full Packed (RFP) Format when N is
 72 *  even. We give an example where N = 6.
 73 *
 74 *      AP is Upper             AP is Lower
 75 *
 76 *   00 01 02 03 04 05       00
 77 *      11 12 13 14 15       10 11
 78 *         22 23 24 25       20 21 22
 79 *            33 34 35       30 31 32 33
 80 *               44 45       40 41 42 43 44
 81 *                  55       50 51 52 53 54 55
 82 *
 83 *
 84 *  Let TRANSR = 'N'. RFP holds AP as follows:
 85 *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 86 *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 87 *  the transpose of the first three columns of AP upper.
 88 *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 89 *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 90 *  the transpose of the last three columns of AP lower.
 91 *  This covers the case N even and TRANSR = 'N'.
 92 *
 93 *         RFP A                   RFP A
 94 *
 95 *        03 04 05                33 43 53
 96 *        13 14 15                00 44 54
 97 *        23 24 25                10 11 55
 98 *        33 34 35                20 21 22
 99 *        00 44 45                30 31 32
100 *        01 11 55                40 41 42
101 *        02 12 22                50 51 52
102 *
103 *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
104 *  transpose of RFP A above. One therefore gets:
105 *
106 *
107 *           RFP A                   RFP A
108 *
109 *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
110 *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
111 *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
112 *
113 *
114 *  We then consider Rectangular Full Packed (RFP) Format when N is
115 *  odd. We give an example where N = 5.
116 *
117 *     AP is Upper                 AP is Lower
118 *
119 *   00 01 02 03 04              00
120 *      11 12 13 14              10 11
121 *         22 23 24              20 21 22
122 *            33 34              30 31 32 33
123 *               44              40 41 42 43 44
124 *
125 *
126 *  Let TRANSR = 'N'. RFP holds AP as follows:
127 *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
128 *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
129 *  the transpose of the first two columns of AP upper.
130 *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
131 *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
132 *  the transpose of the last two columns of AP lower.
133 *  This covers the case N odd and TRANSR = 'N'.
134 *
135 *         RFP A                   RFP A
136 *
137 *        02 03 04                00 33 43
138 *        12 13 14                10 11 44
139 *        22 23 24                20 21 22
140 *        00 33 34                30 31 32
141 *        01 11 44                40 41 42
142 *
143 *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
144 *  transpose of RFP A above. One therefore gets:
145 *
146 *           RFP A                   RFP A
147 *
148 *     02 12 22 00 01             00 10 20 30 40 50
149 *     03 13 23 33 11             33 11 21 31 41 51
150 *     04 14 24 34 44             43 44 22 32 42 52
151 *
152 *  =====================================================================
153 *
154 *     .. Parameters ..
155       DOUBLE PRECISION   ONE
156       PARAMETER          ( ONE = 1.0D+0 )
157 *     ..
158 *     .. Local Scalars ..
159       LOGICAL            LOWER, NISODD, NORMALTRANSR
160       INTEGER            N1, N2, K
161 *     ..
162 *     .. External Functions ..
163       LOGICAL            LSAME
164       EXTERNAL           LSAME
165 *     ..
166 *     .. External Subroutines ..
167       EXTERNAL           XERBLA, DTRMM, DTRTRI
168 *     ..
169 *     .. Intrinsic Functions ..
170       INTRINSIC          MOD
171 *     ..
172 *     .. Executable Statements ..
173 *
174 *     Test the input parameters.
175 *
176       INFO = 0
177       NORMALTRANSR = LSAME( TRANSR, 'N' )
178       LOWER = LSAME( UPLO, 'L' )
179       IF.NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
180          INFO = -1
181       ELSE IF.NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
182          INFO = -2
183       ELSE IF.NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
184      $         THEN
185          INFO = -3
186       ELSE IF( N.LT.0 ) THEN
187          INFO = -4
188       END IF
189       IF( INFO.NE.0 ) THEN
190          CALL XERBLA( 'DTFTRI'-INFO )
191          RETURN
192       END IF
193 *
194 *     Quick return if possible
195 *
196       IF( N.EQ.0 )
197      $   RETURN
198 *
199 *     If N is odd, set NISODD = .TRUE.
200 *     If N is even, set K = N/2 and NISODD = .FALSE.
201 *
202       IFMOD( N, 2 ).EQ.0 ) THEN
203          K = N / 2
204          NISODD = .FALSE.
205       ELSE
206          NISODD = .TRUE.
207       END IF
208 *
209 *     Set N1 and N2 depending on LOWER
210 *
211       IF( LOWER ) THEN
212          N2 = N / 2
213          N1 = N - N2
214       ELSE
215          N1 = N / 2
216          N2 = N - N1
217       END IF
218 *
219 *
220 *     start execution: there are eight cases
221 *
222       IF( NISODD ) THEN
223 *
224 *        N is odd
225 *
226          IF( NORMALTRANSR ) THEN
227 *
228 *           N is odd and TRANSR = 'N'
229 *
230             IF( LOWER ) THEN
231 *
232 *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
233 *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
234 *             T1 -> a(0), T2 -> a(n), S -> a(n1)
235 *
236                CALL DTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
237                IF( INFO.GT.0 )
238      $            RETURN
239                CALL DTRMM( 'R''L''N', DIAG, N2, N1, -ONE, A( 0 ),
240      $                     N, A( N1 ), N )
241                CALL DTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
242                IF( INFO.GT.0 )
243      $            INFO = INFO + N1
244                IF( INFO.GT.0 )
245      $            RETURN
246                CALL DTRMM( 'L''U''T', DIAG, N2, N1, ONE, A( N ), N,
247      $                     A( N1 ), N )
248 *
249             ELSE
250 *
251 *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
252 *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
253 *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
254 *
255                CALL DTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
256                IF( INFO.GT.0 )
257      $            RETURN
258                CALL DTRMM( 'L''L''T', DIAG, N1, N2, -ONE, A( N2 ),
259      $                     N, A( 0 ), N )
260                CALL DTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
261                IF( INFO.GT.0 )
262      $            INFO = INFO + N1
263                IF( INFO.GT.0 )
264      $            RETURN
265                CALL DTRMM( 'R''U''N', DIAG, N1, N2, ONE, A( N1 ),
266      $                     N, A( 0 ), N )
267 *
268             END IF
269 *
270          ELSE
271 *
272 *           N is odd and TRANSR = 'T'
273 *
274             IF( LOWER ) THEN
275 *
276 *              SRPA for LOWER, TRANSPOSE and N is odd
277 *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
278 *
279                CALL DTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
280                IF( INFO.GT.0 )
281      $            RETURN
282                CALL DTRMM( 'L''U''N', DIAG, N1, N2, -ONE, A( 0 ),
283      $                     N1, A( N1*N1 ), N1 )
284                CALL DTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
285                IF( INFO.GT.0 )
286      $            INFO = INFO + N1
287                IF( INFO.GT.0 )
288      $            RETURN
289                CALL DTRMM( 'R''L''T', DIAG, N1, N2, ONE, A( 1 ),
290      $                     N1, A( N1*N1 ), N1 )
291 *
292             ELSE
293 *
294 *              SRPA for UPPER, TRANSPOSE and N is odd
295 *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
296 *
297                CALL DTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
298                IF( INFO.GT.0 )
299      $            RETURN
300                CALL DTRMM( 'R''U''T', DIAG, N2, N1, -ONE,
301      $                     A( N2*N2 ), N2, A( 0 ), N2 )
302                CALL DTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
303                IF( INFO.GT.0 )
304      $            INFO = INFO + N1
305                IF( INFO.GT.0 )
306      $            RETURN
307                CALL DTRMM( 'L''L''N', DIAG, N2, N1, ONE,
308      $                     A( N1*N2 ), N2, A( 0 ), N2 )
309             END IF
310 *
311          END IF
312 *
313       ELSE
314 *
315 *        N is even
316 *
317          IF( NORMALTRANSR ) THEN
318 *
319 *           N is even and TRANSR = 'N'
320 *
321             IF( LOWER ) THEN
322 *
323 *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
324 *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
325 *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
326 *
327                CALL DTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
328                IF( INFO.GT.0 )
329      $            RETURN
330                CALL DTRMM( 'R''L''N', DIAG, K, K, -ONE, A( 1 ),
331      $                     N+1, A( K+1 ), N+1 )
332                CALL DTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
333                IF( INFO.GT.0 )
334      $            INFO = INFO + K
335                IF( INFO.GT.0 )
336      $            RETURN
337                CALL DTRMM( 'L''U''T', DIAG, K, K, ONE, A( 0 ), N+1,
338      $                     A( K+1 ), N+1 )
339 *
340             ELSE
341 *
342 *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
343 *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
344 *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
345 *
346                CALL DTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
347                IF( INFO.GT.0 )
348      $            RETURN
349                CALL DTRMM( 'L''L''T', DIAG, K, K, -ONE, A( K+1 ),
350      $                     N+1, A( 0 ), N+1 )
351                CALL DTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
352                IF( INFO.GT.0 )
353      $            INFO = INFO + K
354                IF( INFO.GT.0 )
355      $            RETURN
356                CALL DTRMM( 'R''U''N', DIAG, K, K, ONE, A( K ), N+1,
357      $                     A( 0 ), N+1 )
358             END IF
359          ELSE
360 *
361 *           N is even and TRANSR = 'T'
362 *
363             IF( LOWER ) THEN
364 *
365 *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
366 *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
367 *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
368 *
369                CALL DTRTRI( 'U', DIAG, K, A( K ), K, INFO )
370                IF( INFO.GT.0 )
371      $            RETURN
372                CALL DTRMM( 'L''U''N', DIAG, K, K, -ONE, A( K ), K,
373      $                     A( K*( K+1 ) ), K )
374                CALL DTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
375                IF( INFO.GT.0 )
376      $            INFO = INFO + K
377                IF( INFO.GT.0 )
378      $            RETURN
379                CALL DTRMM( 'R''L''T', DIAG, K, K, ONE, A( 0 ), K,
380      $                     A( K*( K+1 ) ), K )
381             ELSE
382 *
383 *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
384 *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
385 *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
386 *
387                CALL DTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
388                IF( INFO.GT.0 )
389      $            RETURN
390                CALL DTRMM( 'R''U''T', DIAG, K, K, -ONE,
391      $                     A( K*( K+1 ) ), K, A( 0 ), K )
392                CALL DTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
393                IF( INFO.GT.0 )
394      $            INFO = INFO + K
395                IF( INFO.GT.0 )
396      $            RETURN
397                CALL DTRMM( 'L''L''N', DIAG, K, K, ONE, A( K*K ), K,
398      $                     A( 0 ), K )
399             END IF
400          END IF
401       END IF
402 *
403       RETURN
404 *
405 *     End of DTFTRI
406 *
407       END