1 SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 *
5 * -- Contributed by Fred Gustavson of the IBM Watson Research Center --
6 * -- April 2011 --
7 *
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 *
11 * ..
12 * .. Scalar Arguments ..
13 CHARACTER TRANSR, UPLO
14 INTEGER INFO, N
15 * ..
16 * .. Array Arguments ..
17 DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
18 * ..
19 *
20 * Purpose
21 * =======
22 *
23 * DTFTTP copies a triangular matrix A from rectangular full packed
24 * format (TF) to standard packed format (TP).
25 *
26 * Arguments
27 * =========
28 *
29 * TRANSR (input) CHARACTER*1
30 * = 'N': ARF is in Normal format;
31 * = 'T': ARF is in Transpose format;
32 *
33 * UPLO (input) CHARACTER*1
34 * = 'U': A is upper triangular;
35 * = 'L': A is lower triangular.
36 *
37 * N (input) INTEGER
38 * The order of the matrix A. N >= 0.
39 *
40 * ARF (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
41 * On entry, the upper or lower triangular matrix A stored in
42 * RFP format. For a further discussion see Notes below.
43 *
44 * AP (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
45 * On exit, the upper or lower triangular matrix A, packed
46 * columnwise in a linear array. The j-th column of A is stored
47 * in the array AP as follows:
48 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
49 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
50 *
51 * INFO (output) INTEGER
52 * = 0: successful exit
53 * < 0: if INFO = -i, the i-th argument had an illegal value
54 *
55 * Further Details
56 * ===============
57 *
58 * We first consider Rectangular Full Packed (RFP) Format when N is
59 * even. We give an example where N = 6.
60 *
61 * AP is Upper AP is Lower
62 *
63 * 00 01 02 03 04 05 00
64 * 11 12 13 14 15 10 11
65 * 22 23 24 25 20 21 22
66 * 33 34 35 30 31 32 33
67 * 44 45 40 41 42 43 44
68 * 55 50 51 52 53 54 55
69 *
70 *
71 * Let TRANSR = 'N'. RFP holds AP as follows:
72 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
73 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of
74 * the transpose of the first three columns of AP upper.
75 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
76 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of
77 * the transpose of the last three columns of AP lower.
78 * This covers the case N even and TRANSR = 'N'.
79 *
80 * RFP A RFP A
81 *
82 * 03 04 05 33 43 53
83 * 13 14 15 00 44 54
84 * 23 24 25 10 11 55
85 * 33 34 35 20 21 22
86 * 00 44 45 30 31 32
87 * 01 11 55 40 41 42
88 * 02 12 22 50 51 52
89 *
90 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
91 * transpose of RFP A above. One therefore gets:
92 *
93 *
94 * RFP A RFP A
95 *
96 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50
97 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51
98 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52
99 *
100 *
101 * We then consider Rectangular Full Packed (RFP) Format when N is
102 * odd. We give an example where N = 5.
103 *
104 * AP is Upper AP is Lower
105 *
106 * 00 01 02 03 04 00
107 * 11 12 13 14 10 11
108 * 22 23 24 20 21 22
109 * 33 34 30 31 32 33
110 * 44 40 41 42 43 44
111 *
112 *
113 * Let TRANSR = 'N'. RFP holds AP as follows:
114 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
115 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of
116 * the transpose of the first two columns of AP upper.
117 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
118 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of
119 * the transpose of the last two columns of AP lower.
120 * This covers the case N odd and TRANSR = 'N'.
121 *
122 * RFP A RFP A
123 *
124 * 02 03 04 00 33 43
125 * 12 13 14 10 11 44
126 * 22 23 24 20 21 22
127 * 00 33 34 30 31 32
128 * 01 11 44 40 41 42
129 *
130 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
131 * transpose of RFP A above. One therefore gets:
132 *
133 * RFP A RFP A
134 *
135 * 02 12 22 00 01 00 10 20 30 40 50
136 * 03 13 23 33 11 33 11 21 31 41 51
137 * 04 14 24 34 44 43 44 22 32 42 52
138 *
139 * =====================================================================
140 *
141 * .. Parameters ..
142 * ..
143 * .. Local Scalars ..
144 LOGICAL LOWER, NISODD, NORMALTRANSR
145 INTEGER N1, N2, K, NT
146 INTEGER I, J, IJ
147 INTEGER IJP, JP, LDA, JS
148 * ..
149 * .. External Functions ..
150 LOGICAL LSAME
151 EXTERNAL LSAME
152 * ..
153 * .. External Subroutines ..
154 EXTERNAL XERBLA
155 * ..
156 * .. Executable Statements ..
157 *
158 * Test the input parameters.
159 *
160 INFO = 0
161 NORMALTRANSR = LSAME( TRANSR, 'N' )
162 LOWER = LSAME( UPLO, 'L' )
163 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
164 INFO = -1
165 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
166 INFO = -2
167 ELSE IF( N.LT.0 ) THEN
168 INFO = -3
169 END IF
170 IF( INFO.NE.0 ) THEN
171 CALL XERBLA( 'DTFTTP', -INFO )
172 RETURN
173 END IF
174 *
175 * Quick return if possible
176 *
177 IF( N.EQ.0 )
178 $ RETURN
179 *
180 IF( N.EQ.1 ) THEN
181 IF( NORMALTRANSR ) THEN
182 AP( 0 ) = ARF( 0 )
183 ELSE
184 AP( 0 ) = ARF( 0 )
185 END IF
186 RETURN
187 END IF
188 *
189 * Size of array ARF(0:NT-1)
190 *
191 NT = N*( N+1 ) / 2
192 *
193 * Set N1 and N2 depending on LOWER
194 *
195 IF( LOWER ) THEN
196 N2 = N / 2
197 N1 = N - N2
198 ELSE
199 N1 = N / 2
200 N2 = N - N1
201 END IF
202 *
203 * If N is odd, set NISODD = .TRUE.
204 * If N is even, set K = N/2 and NISODD = .FALSE.
205 *
206 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
207 * where noe = 0 if n is even, noe = 1 if n is odd
208 *
209 IF( MOD( N, 2 ).EQ.0 ) THEN
210 K = N / 2
211 NISODD = .FALSE.
212 LDA = N + 1
213 ELSE
214 NISODD = .TRUE.
215 LDA = N
216 END IF
217 *
218 * ARF^C has lda rows and n+1-noe cols
219 *
220 IF( .NOT.NORMALTRANSR )
221 $ LDA = ( N+1 ) / 2
222 *
223 * start execution: there are eight cases
224 *
225 IF( NISODD ) THEN
226 *
227 * N is odd
228 *
229 IF( NORMALTRANSR ) THEN
230 *
231 * N is odd and TRANSR = 'N'
232 *
233 IF( LOWER ) THEN
234 *
235 * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
236 * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
237 * T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
238 *
239 IJP = 0
240 JP = 0
241 DO J = 0, N2
242 DO I = J, N - 1
243 IJ = I + JP
244 AP( IJP ) = ARF( IJ )
245 IJP = IJP + 1
246 END DO
247 JP = JP + LDA
248 END DO
249 DO I = 0, N2 - 1
250 DO J = 1 + I, N2
251 IJ = I + J*LDA
252 AP( IJP ) = ARF( IJ )
253 IJP = IJP + 1
254 END DO
255 END DO
256 *
257 ELSE
258 *
259 * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
260 * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
261 * T1 -> a(n2), T2 -> a(n1), S -> a(0)
262 *
263 IJP = 0
264 DO J = 0, N1 - 1
265 IJ = N2 + J
266 DO I = 0, J
267 AP( IJP ) = ARF( IJ )
268 IJP = IJP + 1
269 IJ = IJ + LDA
270 END DO
271 END DO
272 JS = 0
273 DO J = N1, N - 1
274 IJ = JS
275 DO IJ = JS, JS + J
276 AP( IJP ) = ARF( IJ )
277 IJP = IJP + 1
278 END DO
279 JS = JS + LDA
280 END DO
281 *
282 END IF
283 *
284 ELSE
285 *
286 * N is odd and TRANSR = 'T'
287 *
288 IF( LOWER ) THEN
289 *
290 * SRPA for LOWER, TRANSPOSE and N is odd
291 * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
292 * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
293 *
294 IJP = 0
295 DO I = 0, N2
296 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
297 AP( IJP ) = ARF( IJ )
298 IJP = IJP + 1
299 END DO
300 END DO
301 JS = 1
302 DO J = 0, N2 - 1
303 DO IJ = JS, JS + N2 - J - 1
304 AP( IJP ) = ARF( IJ )
305 IJP = IJP + 1
306 END DO
307 JS = JS + LDA + 1
308 END DO
309 *
310 ELSE
311 *
312 * SRPA for UPPER, TRANSPOSE and N is odd
313 * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
314 * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
315 *
316 IJP = 0
317 JS = N2*LDA
318 DO J = 0, N1 - 1
319 DO IJ = JS, JS + J
320 AP( IJP ) = ARF( IJ )
321 IJP = IJP + 1
322 END DO
323 JS = JS + LDA
324 END DO
325 DO I = 0, N1
326 DO IJ = I, I + ( N1+I )*LDA, LDA
327 AP( IJP ) = ARF( IJ )
328 IJP = IJP + 1
329 END DO
330 END DO
331 *
332 END IF
333 *
334 END IF
335 *
336 ELSE
337 *
338 * N is even
339 *
340 IF( NORMALTRANSR ) THEN
341 *
342 * N is even and TRANSR = 'N'
343 *
344 IF( LOWER ) THEN
345 *
346 * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
347 * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
348 * T1 -> a(1), T2 -> a(0), S -> a(k+1)
349 *
350 IJP = 0
351 JP = 0
352 DO J = 0, K - 1
353 DO I = J, N - 1
354 IJ = 1 + I + JP
355 AP( IJP ) = ARF( IJ )
356 IJP = IJP + 1
357 END DO
358 JP = JP + LDA
359 END DO
360 DO I = 0, K - 1
361 DO J = I, K - 1
362 IJ = I + J*LDA
363 AP( IJP ) = ARF( IJ )
364 IJP = IJP + 1
365 END DO
366 END DO
367 *
368 ELSE
369 *
370 * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
371 * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
372 * T1 -> a(k+1), T2 -> a(k), S -> a(0)
373 *
374 IJP = 0
375 DO J = 0, K - 1
376 IJ = K + 1 + J
377 DO I = 0, J
378 AP( IJP ) = ARF( IJ )
379 IJP = IJP + 1
380 IJ = IJ + LDA
381 END DO
382 END DO
383 JS = 0
384 DO J = K, N - 1
385 IJ = JS
386 DO IJ = JS, JS + J
387 AP( IJP ) = ARF( IJ )
388 IJP = IJP + 1
389 END DO
390 JS = JS + LDA
391 END DO
392 *
393 END IF
394 *
395 ELSE
396 *
397 * N is even and TRANSR = 'T'
398 *
399 IF( LOWER ) THEN
400 *
401 * SRPA for LOWER, TRANSPOSE and N is even (see paper)
402 * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
403 * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
404 *
405 IJP = 0
406 DO I = 0, K - 1
407 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
408 AP( IJP ) = ARF( IJ )
409 IJP = IJP + 1
410 END DO
411 END DO
412 JS = 0
413 DO J = 0, K - 1
414 DO IJ = JS, JS + K - J - 1
415 AP( IJP ) = ARF( IJ )
416 IJP = IJP + 1
417 END DO
418 JS = JS + LDA + 1
419 END DO
420 *
421 ELSE
422 *
423 * SRPA for UPPER, TRANSPOSE and N is even (see paper)
424 * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
425 * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
426 *
427 IJP = 0
428 JS = ( K+1 )*LDA
429 DO J = 0, K - 1
430 DO IJ = JS, JS + J
431 AP( IJP ) = ARF( IJ )
432 IJP = IJP + 1
433 END DO
434 JS = JS + LDA
435 END DO
436 DO I = 0, K - 1
437 DO IJ = I, I + ( K+I )*LDA, LDA
438 AP( IJP ) = ARF( IJ )
439 IJP = IJP + 1
440 END DO
441 END DO
442 *
443 END IF
444 *
445 END IF
446 *
447 END IF
448 *
449 RETURN
450 *
451 * End of DTFTTP
452 *
453 END
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 *
5 * -- Contributed by Fred Gustavson of the IBM Watson Research Center --
6 * -- April 2011 --
7 *
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 *
11 * ..
12 * .. Scalar Arguments ..
13 CHARACTER TRANSR, UPLO
14 INTEGER INFO, N
15 * ..
16 * .. Array Arguments ..
17 DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
18 * ..
19 *
20 * Purpose
21 * =======
22 *
23 * DTFTTP copies a triangular matrix A from rectangular full packed
24 * format (TF) to standard packed format (TP).
25 *
26 * Arguments
27 * =========
28 *
29 * TRANSR (input) CHARACTER*1
30 * = 'N': ARF is in Normal format;
31 * = 'T': ARF is in Transpose format;
32 *
33 * UPLO (input) CHARACTER*1
34 * = 'U': A is upper triangular;
35 * = 'L': A is lower triangular.
36 *
37 * N (input) INTEGER
38 * The order of the matrix A. N >= 0.
39 *
40 * ARF (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
41 * On entry, the upper or lower triangular matrix A stored in
42 * RFP format. For a further discussion see Notes below.
43 *
44 * AP (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
45 * On exit, the upper or lower triangular matrix A, packed
46 * columnwise in a linear array. The j-th column of A is stored
47 * in the array AP as follows:
48 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
49 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
50 *
51 * INFO (output) INTEGER
52 * = 0: successful exit
53 * < 0: if INFO = -i, the i-th argument had an illegal value
54 *
55 * Further Details
56 * ===============
57 *
58 * We first consider Rectangular Full Packed (RFP) Format when N is
59 * even. We give an example where N = 6.
60 *
61 * AP is Upper AP is Lower
62 *
63 * 00 01 02 03 04 05 00
64 * 11 12 13 14 15 10 11
65 * 22 23 24 25 20 21 22
66 * 33 34 35 30 31 32 33
67 * 44 45 40 41 42 43 44
68 * 55 50 51 52 53 54 55
69 *
70 *
71 * Let TRANSR = 'N'. RFP holds AP as follows:
72 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
73 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of
74 * the transpose of the first three columns of AP upper.
75 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
76 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of
77 * the transpose of the last three columns of AP lower.
78 * This covers the case N even and TRANSR = 'N'.
79 *
80 * RFP A RFP A
81 *
82 * 03 04 05 33 43 53
83 * 13 14 15 00 44 54
84 * 23 24 25 10 11 55
85 * 33 34 35 20 21 22
86 * 00 44 45 30 31 32
87 * 01 11 55 40 41 42
88 * 02 12 22 50 51 52
89 *
90 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
91 * transpose of RFP A above. One therefore gets:
92 *
93 *
94 * RFP A RFP A
95 *
96 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50
97 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51
98 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52
99 *
100 *
101 * We then consider Rectangular Full Packed (RFP) Format when N is
102 * odd. We give an example where N = 5.
103 *
104 * AP is Upper AP is Lower
105 *
106 * 00 01 02 03 04 00
107 * 11 12 13 14 10 11
108 * 22 23 24 20 21 22
109 * 33 34 30 31 32 33
110 * 44 40 41 42 43 44
111 *
112 *
113 * Let TRANSR = 'N'. RFP holds AP as follows:
114 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
115 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of
116 * the transpose of the first two columns of AP upper.
117 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
118 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of
119 * the transpose of the last two columns of AP lower.
120 * This covers the case N odd and TRANSR = 'N'.
121 *
122 * RFP A RFP A
123 *
124 * 02 03 04 00 33 43
125 * 12 13 14 10 11 44
126 * 22 23 24 20 21 22
127 * 00 33 34 30 31 32
128 * 01 11 44 40 41 42
129 *
130 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
131 * transpose of RFP A above. One therefore gets:
132 *
133 * RFP A RFP A
134 *
135 * 02 12 22 00 01 00 10 20 30 40 50
136 * 03 13 23 33 11 33 11 21 31 41 51
137 * 04 14 24 34 44 43 44 22 32 42 52
138 *
139 * =====================================================================
140 *
141 * .. Parameters ..
142 * ..
143 * .. Local Scalars ..
144 LOGICAL LOWER, NISODD, NORMALTRANSR
145 INTEGER N1, N2, K, NT
146 INTEGER I, J, IJ
147 INTEGER IJP, JP, LDA, JS
148 * ..
149 * .. External Functions ..
150 LOGICAL LSAME
151 EXTERNAL LSAME
152 * ..
153 * .. External Subroutines ..
154 EXTERNAL XERBLA
155 * ..
156 * .. Executable Statements ..
157 *
158 * Test the input parameters.
159 *
160 INFO = 0
161 NORMALTRANSR = LSAME( TRANSR, 'N' )
162 LOWER = LSAME( UPLO, 'L' )
163 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
164 INFO = -1
165 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
166 INFO = -2
167 ELSE IF( N.LT.0 ) THEN
168 INFO = -3
169 END IF
170 IF( INFO.NE.0 ) THEN
171 CALL XERBLA( 'DTFTTP', -INFO )
172 RETURN
173 END IF
174 *
175 * Quick return if possible
176 *
177 IF( N.EQ.0 )
178 $ RETURN
179 *
180 IF( N.EQ.1 ) THEN
181 IF( NORMALTRANSR ) THEN
182 AP( 0 ) = ARF( 0 )
183 ELSE
184 AP( 0 ) = ARF( 0 )
185 END IF
186 RETURN
187 END IF
188 *
189 * Size of array ARF(0:NT-1)
190 *
191 NT = N*( N+1 ) / 2
192 *
193 * Set N1 and N2 depending on LOWER
194 *
195 IF( LOWER ) THEN
196 N2 = N / 2
197 N1 = N - N2
198 ELSE
199 N1 = N / 2
200 N2 = N - N1
201 END IF
202 *
203 * If N is odd, set NISODD = .TRUE.
204 * If N is even, set K = N/2 and NISODD = .FALSE.
205 *
206 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
207 * where noe = 0 if n is even, noe = 1 if n is odd
208 *
209 IF( MOD( N, 2 ).EQ.0 ) THEN
210 K = N / 2
211 NISODD = .FALSE.
212 LDA = N + 1
213 ELSE
214 NISODD = .TRUE.
215 LDA = N
216 END IF
217 *
218 * ARF^C has lda rows and n+1-noe cols
219 *
220 IF( .NOT.NORMALTRANSR )
221 $ LDA = ( N+1 ) / 2
222 *
223 * start execution: there are eight cases
224 *
225 IF( NISODD ) THEN
226 *
227 * N is odd
228 *
229 IF( NORMALTRANSR ) THEN
230 *
231 * N is odd and TRANSR = 'N'
232 *
233 IF( LOWER ) THEN
234 *
235 * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
236 * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
237 * T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
238 *
239 IJP = 0
240 JP = 0
241 DO J = 0, N2
242 DO I = J, N - 1
243 IJ = I + JP
244 AP( IJP ) = ARF( IJ )
245 IJP = IJP + 1
246 END DO
247 JP = JP + LDA
248 END DO
249 DO I = 0, N2 - 1
250 DO J = 1 + I, N2
251 IJ = I + J*LDA
252 AP( IJP ) = ARF( IJ )
253 IJP = IJP + 1
254 END DO
255 END DO
256 *
257 ELSE
258 *
259 * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
260 * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
261 * T1 -> a(n2), T2 -> a(n1), S -> a(0)
262 *
263 IJP = 0
264 DO J = 0, N1 - 1
265 IJ = N2 + J
266 DO I = 0, J
267 AP( IJP ) = ARF( IJ )
268 IJP = IJP + 1
269 IJ = IJ + LDA
270 END DO
271 END DO
272 JS = 0
273 DO J = N1, N - 1
274 IJ = JS
275 DO IJ = JS, JS + J
276 AP( IJP ) = ARF( IJ )
277 IJP = IJP + 1
278 END DO
279 JS = JS + LDA
280 END DO
281 *
282 END IF
283 *
284 ELSE
285 *
286 * N is odd and TRANSR = 'T'
287 *
288 IF( LOWER ) THEN
289 *
290 * SRPA for LOWER, TRANSPOSE and N is odd
291 * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
292 * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
293 *
294 IJP = 0
295 DO I = 0, N2
296 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
297 AP( IJP ) = ARF( IJ )
298 IJP = IJP + 1
299 END DO
300 END DO
301 JS = 1
302 DO J = 0, N2 - 1
303 DO IJ = JS, JS + N2 - J - 1
304 AP( IJP ) = ARF( IJ )
305 IJP = IJP + 1
306 END DO
307 JS = JS + LDA + 1
308 END DO
309 *
310 ELSE
311 *
312 * SRPA for UPPER, TRANSPOSE and N is odd
313 * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
314 * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
315 *
316 IJP = 0
317 JS = N2*LDA
318 DO J = 0, N1 - 1
319 DO IJ = JS, JS + J
320 AP( IJP ) = ARF( IJ )
321 IJP = IJP + 1
322 END DO
323 JS = JS + LDA
324 END DO
325 DO I = 0, N1
326 DO IJ = I, I + ( N1+I )*LDA, LDA
327 AP( IJP ) = ARF( IJ )
328 IJP = IJP + 1
329 END DO
330 END DO
331 *
332 END IF
333 *
334 END IF
335 *
336 ELSE
337 *
338 * N is even
339 *
340 IF( NORMALTRANSR ) THEN
341 *
342 * N is even and TRANSR = 'N'
343 *
344 IF( LOWER ) THEN
345 *
346 * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
347 * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
348 * T1 -> a(1), T2 -> a(0), S -> a(k+1)
349 *
350 IJP = 0
351 JP = 0
352 DO J = 0, K - 1
353 DO I = J, N - 1
354 IJ = 1 + I + JP
355 AP( IJP ) = ARF( IJ )
356 IJP = IJP + 1
357 END DO
358 JP = JP + LDA
359 END DO
360 DO I = 0, K - 1
361 DO J = I, K - 1
362 IJ = I + J*LDA
363 AP( IJP ) = ARF( IJ )
364 IJP = IJP + 1
365 END DO
366 END DO
367 *
368 ELSE
369 *
370 * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
371 * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
372 * T1 -> a(k+1), T2 -> a(k), S -> a(0)
373 *
374 IJP = 0
375 DO J = 0, K - 1
376 IJ = K + 1 + J
377 DO I = 0, J
378 AP( IJP ) = ARF( IJ )
379 IJP = IJP + 1
380 IJ = IJ + LDA
381 END DO
382 END DO
383 JS = 0
384 DO J = K, N - 1
385 IJ = JS
386 DO IJ = JS, JS + J
387 AP( IJP ) = ARF( IJ )
388 IJP = IJP + 1
389 END DO
390 JS = JS + LDA
391 END DO
392 *
393 END IF
394 *
395 ELSE
396 *
397 * N is even and TRANSR = 'T'
398 *
399 IF( LOWER ) THEN
400 *
401 * SRPA for LOWER, TRANSPOSE and N is even (see paper)
402 * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
403 * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
404 *
405 IJP = 0
406 DO I = 0, K - 1
407 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
408 AP( IJP ) = ARF( IJ )
409 IJP = IJP + 1
410 END DO
411 END DO
412 JS = 0
413 DO J = 0, K - 1
414 DO IJ = JS, JS + K - J - 1
415 AP( IJP ) = ARF( IJ )
416 IJP = IJP + 1
417 END DO
418 JS = JS + LDA + 1
419 END DO
420 *
421 ELSE
422 *
423 * SRPA for UPPER, TRANSPOSE and N is even (see paper)
424 * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
425 * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
426 *
427 IJP = 0
428 JS = ( K+1 )*LDA
429 DO J = 0, K - 1
430 DO IJ = JS, JS + J
431 AP( IJP ) = ARF( IJ )
432 IJP = IJP + 1
433 END DO
434 JS = JS + LDA
435 END DO
436 DO I = 0, K - 1
437 DO IJ = I, I + ( K+I )*LDA, LDA
438 AP( IJP ) = ARF( IJ )
439 IJP = IJP + 1
440 END DO
441 END DO
442 *
443 END IF
444 *
445 END IF
446 *
447 END IF
448 *
449 RETURN
450 *
451 * End of DTFTTP
452 *
453 END