1       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  2      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            WANTQ, WANTZ
 11       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 15      $                   WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
 22 *  of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
 23 *  (A, B) by an orthogonal equivalence transformation.
 24 *
 25 *  (A, B) must be in generalized real Schur canonical form (as returned
 26 *  by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
 27 *  diagonal blocks. B is upper triangular.
 28 *
 29 *  Optionally, the matrices Q and Z of generalized Schur vectors are
 30 *  updated.
 31 *
 32 *         Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
 33 *         Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
 34 *
 35 *
 36 *  Arguments
 37 *  =========
 38 *
 39 *  WANTQ   (input) LOGICAL
 40 *          .TRUE. : update the left transformation matrix Q;
 41 *          .FALSE.: do not update Q.
 42 *
 43 *  WANTZ   (input) LOGICAL
 44 *          .TRUE. : update the right transformation matrix Z;
 45 *          .FALSE.: do not update Z.
 46 *
 47 *  N       (input) INTEGER
 48 *          The order of the matrices A and B. N >= 0.
 49 *
 50 *  A       (input/output) DOUBLE PRECISION array, dimensions (LDA,N)
 51 *          On entry, the matrix A in the pair (A, B).
 52 *          On exit, the updated matrix A.
 53 *
 54 *  LDA     (input) INTEGER
 55 *          The leading dimension of the array A. LDA >= max(1,N).
 56 *
 57 *  B       (input/output) DOUBLE PRECISION array, dimensions (LDB,N)
 58 *          On entry, the matrix B in the pair (A, B).
 59 *          On exit, the updated matrix B.
 60 *
 61 *  LDB     (input) INTEGER
 62 *          The leading dimension of the array B. LDB >= max(1,N).
 63 *
 64 *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
 65 *          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
 66 *          On exit, the updated matrix Q.
 67 *          Not referenced if WANTQ = .FALSE..
 68 *
 69 *  LDQ     (input) INTEGER
 70 *          The leading dimension of the array Q. LDQ >= 1.
 71 *          If WANTQ = .TRUE., LDQ >= N.
 72 *
 73 *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
 74 *          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
 75 *          On exit, the updated matrix Z.
 76 *          Not referenced if WANTZ = .FALSE..
 77 *
 78 *  LDZ     (input) INTEGER
 79 *          The leading dimension of the array Z. LDZ >= 1.
 80 *          If WANTZ = .TRUE., LDZ >= N.
 81 *
 82 *  J1      (input) INTEGER
 83 *          The index to the first block (A11, B11). 1 <= J1 <= N.
 84 *
 85 *  N1      (input) INTEGER
 86 *          The order of the first block (A11, B11). N1 = 0, 1 or 2.
 87 *
 88 *  N2      (input) INTEGER
 89 *          The order of the second block (A22, B22). N2 = 0, 1 or 2.
 90 *
 91 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
 92 *
 93 *  LWORK   (input) INTEGER
 94 *          The dimension of the array WORK.
 95 *          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
 96 *
 97 *  INFO    (output) INTEGER
 98 *            =0: Successful exit
 99 *            >0: If INFO = 1, the transformed matrix (A, B) would be
100 *                too far from generalized Schur form; the blocks are
101 *                not swapped and (A, B) and (Q, Z) are unchanged.
102 *                The problem of swapping is too ill-conditioned.
103 *            <0: If INFO = -16: LWORK is too small. Appropriate value
104 *                for LWORK is returned in WORK(1).
105 *
106 *  Further Details
107 *  ===============
108 *
109 *  Based on contributions by
110 *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
111 *     Umea University, S-901 87 Umea, Sweden.
112 *
113 *  In the current code both weak and strong stability tests are
114 *  performed. The user can omit the strong stability test by changing
115 *  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
116 *  details.
117 *
118 *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
119 *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
120 *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
121 *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
122 *
123 *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
124 *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
125 *      Estimation: Theory, Algorithms and Software,
126 *      Report UMINF - 94.04, Department of Computing Science, Umea
127 *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
128 *      Note 87. To appear in Numerical Algorithms, 1996.
129 *
130 *  =====================================================================
131 *  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
132 *  loops. Sven Hammarling, 1/5/02.
133 *
134 *     .. Parameters ..
135       DOUBLE PRECISION   ZERO, ONE
136       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
137       DOUBLE PRECISION   TWENTY
138       PARAMETER          ( TWENTY = 2.0D+01 )
139       INTEGER            LDST
140       PARAMETER          ( LDST = 4 )
141       LOGICAL            WANDS
142       PARAMETER          ( WANDS = .TRUE. )
143 *     ..
144 *     .. Local Scalars ..
145       LOGICAL            DTRONG, WEAK
146       INTEGER            I, IDUM, LINFO, M
147       DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
148      $                   F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
149 *     ..
150 *     .. Local Arrays ..
151       INTEGER            IWORK( LDST )
152       DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
153      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
154      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
155      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
156      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
157 *     ..
158 *     .. External Functions ..
159       DOUBLE PRECISION   DLAMCH
160       EXTERNAL           DLAMCH
161 *     ..
162 *     .. External Subroutines ..
163       EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
164      $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
165      $                   DROT, DSCAL, DTGSY2
166 *     ..
167 *     .. Intrinsic Functions ..
168       INTRINSIC          ABSMAXSQRT
169 *     ..
170 *     .. Executable Statements ..
171 *
172       INFO = 0
173 *
174 *     Quick return if possible
175 *
176       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
177      $   RETURN
178       IF( N1.GT..OR. ( J1+N1 ).GT.N )
179      $   RETURN
180       M = N1 + N2
181       IF( LWORK.LT.MAX1, N*M, M*M*2 ) ) THEN
182          INFO = -16
183          WORK( 1 ) = MAX1, N*M, M*M*2 )
184          RETURN
185       END IF
186 *
187       WEAK = .FALSE.
188       DTRONG = .FALSE.
189 *
190 *     Make a local copy of selected block
191 *
192       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
193       CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
194       CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
195       CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
196 *
197 *     Compute threshold for testing acceptance of swapping.
198 *
199       EPS = DLAMCH( 'P' )
200       SMLNUM = DLAMCH( 'S' ) / EPS
201       DSCALE = ZERO
202       DSUM = ONE
203       CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
204       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
205       CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
206       CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
207       DNORM = DSCALE*SQRT( DSUM )
208 *
209 *     THRES has been changed from 
210 *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
211 *     to
212 *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
213 *     on 04/01/10.
214 *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
215 *     Jim Demmel and Guillaume Revy. See forum post 1783.
216 *
217       THRESH = MAX( TWENTY*EPS*DNORM, SMLNUM )
218 *
219       IF( M.EQ.2 ) THEN
220 *
221 *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
222 *
223 *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
224 *        using Givens rotations and perform the swap tentatively.
225 *
226          F = S( 22 )*T( 11 ) - T( 22 )*S( 11 )
227          G = S( 22 )*T( 12 ) - T( 22 )*S( 12 )
228          SB = ABS( T( 22 ) )
229          SA = ABS( S( 22 ) )
230          CALL DLARTG( F, G, IR( 12 ), IR( 11 ), DDUM )
231          IR( 21 ) = -IR( 12 )
232          IR( 22 ) = IR( 11 )
233          CALL DROT( 2, S( 11 ), 1, S( 12 ), 1, IR( 11 ),
234      $              IR( 21 ) )
235          CALL DROT( 2, T( 11 ), 1, T( 12 ), 1, IR( 11 ),
236      $              IR( 21 ) )
237          IF( SA.GE.SB ) THEN
238             CALL DLARTG( S( 11 ), S( 21 ), LI( 11 ), LI( 21 ),
239      $                   DDUM )
240          ELSE
241             CALL DLARTG( T( 11 ), T( 21 ), LI( 11 ), LI( 21 ),
242      $                   DDUM )
243          END IF
244          CALL DROT( 2, S( 11 ), LDST, S( 21 ), LDST, LI( 11 ),
245      $              LI( 21 ) )
246          CALL DROT( 2, T( 11 ), LDST, T( 21 ), LDST, LI( 11 ),
247      $              LI( 21 ) )
248          LI( 22 ) = LI( 11 )
249          LI( 12 ) = -LI( 21 )
250 *
251 *        Weak stability test:
252 *           |S21| + |T21| <= O(EPS * F-norm((S, T)))
253 *
254          WS = ABS( S( 21 ) ) + ABS( T( 21 ) )
255          WEAK = WS.LE.THRESH
256          IF.NOT.WEAK )
257      $      GO TO 70
258 *
259          IF( WANDS ) THEN
260 *
261 *           Strong stability test:
262 *             F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B)))
263 *
264             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
265      $                   M )
266             CALL DGEMM( 'N''N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
267      $                  WORK, M )
268             CALL DGEMM( 'N''T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
269      $                  WORK( M*M+1 ), M )
270             DSCALE = ZERO
271             DSUM = ONE
272             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
273 *
274             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
275      $                   M )
276             CALL DGEMM( 'N''N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
277      $                  WORK, M )
278             CALL DGEMM( 'N''T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
279      $                  WORK( M*M+1 ), M )
280             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
281             SS = DSCALE*SQRT( DSUM )
282             DTRONG = SS.LE.THRESH
283             IF.NOT.DTRONG )
284      $         GO TO 70
285          END IF
286 *
287 *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
288 *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
289 *
290          CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 11 ),
291      $              IR( 21 ) )
292          CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 11 ),
293      $              IR( 21 ) )
294          CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
295      $              LI( 11 ), LI( 21 ) )
296          CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
297      $              LI( 11 ), LI( 21 ) )
298 *
299 *        Set  N1-by-N2 (2,1) - blocks to ZERO.
300 *
301          A( J1+1, J1 ) = ZERO
302          B( J1+1, J1 ) = ZERO
303 *
304 *        Accumulate transformations into Q and Z if requested.
305 *
306          IF( WANTZ )
307      $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 11 ),
308      $                 IR( 21 ) )
309          IF( WANTQ )
310      $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 11 ),
311      $                 LI( 21 ) )
312 *
313 *        Exit with INFO = 0 if swap was successfully performed.
314 *
315          RETURN
316 *
317       ELSE
318 *
319 *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
320 *                and 2-by-2 blocks.
321 *
322 *        Solve the generalized Sylvester equation
323 *                 S11 * R - L * S22 = SCALE * S12
324 *                 T11 * R - L * T22 = SCALE * T12
325 *        for R and L. Solutions in LI and IR.
326 *
327          CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
328          CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
329      $                IR( N2+1, N1+1 ), LDST )
330          CALL DTGSY2( 'N'0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
331      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
332      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
333      $                LINFO )
334 *
335 *        Compute orthogonal matrix QL:
336 *
337 *                    QL**T * LI = [ TL ]
338 *                                 [ 0  ]
339 *        where
340 *                    LI =  [      -L              ]
341 *                          [ SCALE * identity(N2) ]
342 *
343          DO 10 I = 1, N2
344             CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
345             LI( N1+I, I ) = SCALE
346    10    CONTINUE
347          CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
348          IF( LINFO.NE.0 )
349      $      GO TO 70
350          CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
351          IF( LINFO.NE.0 )
352      $      GO TO 70
353 *
354 *        Compute orthogonal matrix RQ:
355 *
356 *                    IR * RQ**T =   [ 0  TR],
357 *
358 *         where IR = [ SCALE * identity(N1), R ]
359 *
360          DO 20 I = 1, N1
361             IR( N2+I, I ) = SCALE
362    20    CONTINUE
363          CALL DGERQ2( N1, M, IR( N2+11 ), LDST, TAUR, WORK, LINFO )
364          IF( LINFO.NE.0 )
365      $      GO TO 70
366          CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
367          IF( LINFO.NE.0 )
368      $      GO TO 70
369 *
370 *        Perform the swapping tentatively:
371 *
372          CALL DGEMM( 'T''N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
373      $               WORK, M )
374          CALL DGEMM( 'N''T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
375      $               LDST )
376          CALL DGEMM( 'T''N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
377      $               WORK, M )
378          CALL DGEMM( 'N''T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
379      $               LDST )
380          CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
381          CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
382          CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
383          CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
384 *
385 *        Triangularize the B-part by an RQ factorization.
386 *        Apply transformation (from left) to A-part, giving S.
387 *
388          CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
389          IF( LINFO.NE.0 )
390      $      GO TO 70
391          CALL DORMR2( 'R''T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
392      $                LINFO )
393          IF( LINFO.NE.0 )
394      $      GO TO 70
395          CALL DORMR2( 'L''N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
396      $                LINFO )
397          IF( LINFO.NE.0 )
398      $      GO TO 70
399 *
400 *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
401 *
402          DSCALE = ZERO
403          DSUM = ONE
404          DO 30 I = 1, N2
405             CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
406    30    CONTINUE
407          BRQA21 = DSCALE*SQRT( DSUM )
408 *
409 *        Triangularize the B-part by a QR factorization.
410 *        Apply transformation (from right) to A-part, giving S.
411 *
412          CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
413          IF( LINFO.NE.0 )
414      $      GO TO 70
415          CALL DORM2R( 'L''T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
416      $                WORK, INFO )
417          CALL DORM2R( 'R''N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
418      $                WORK, INFO )
419          IF( LINFO.NE.0 )
420      $      GO TO 70
421 *
422 *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
423 *
424          DSCALE = ZERO
425          DSUM = ONE
426          DO 40 I = 1, N2
427             CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
428    40    CONTINUE
429          BQRA21 = DSCALE*SQRT( DSUM )
430 *
431 *        Decide which method to use.
432 *          Weak stability test:
433 *             F-norm(S21) <= O(EPS * F-norm((S, T)))
434 *
435          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
436             CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
437             CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
438             CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
439             CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
440          ELSE IF( BRQA21.GE.THRESH ) THEN
441             GO TO 70
442          END IF
443 *
444 *        Set lower triangle of B-part to zero
445 *
446          CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
447 *
448          IF( WANDS ) THEN
449 *
450 *           Strong stability test:
451 *              F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B)))
452 *
453             CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
454      $                   M )
455             CALL DGEMM( 'N''N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
456      $                  WORK, M )
457             CALL DGEMM( 'N''N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
458      $                  WORK( M*M+1 ), M )
459             DSCALE = ZERO
460             DSUM = ONE
461             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
462 *
463             CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
464      $                   M )
465             CALL DGEMM( 'N''N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
466      $                  WORK, M )
467             CALL DGEMM( 'N''N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
468      $                  WORK( M*M+1 ), M )
469             CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
470             SS = DSCALE*SQRT( DSUM )
471             DTRONG = ( SS.LE.THRESH )
472             IF.NOT.DTRONG )
473      $         GO TO 70
474 *
475          END IF
476 *
477 *        If the swap is accepted ("weakly" and "strongly"), apply the
478 *        transformations and set N1-by-N2 (2,1)-block to zero.
479 *
480          CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
481 *
482 *        copy back M-by-M diagonal block starting at index J1 of (A, B)
483 *
484          CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
485          CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
486          CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
487 *
488 *        Standardize existing 2-by-2 blocks.
489 *
490          DO 50 I = 1, M*M
491             WORK(I) = ZERO
492    50    CONTINUE
493          WORK( 1 ) = ONE
494          T( 11 ) = ONE
495          IDUM = LWORK - M*- 2
496          IF( N2.GT.1 ) THEN
497             CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
498      $                   WORK( 1 ), WORK( 2 ), T( 11 ), T( 21 ) )
499             WORK( M+1 ) = -WORK( 2 )
500             WORK( M+2 ) = WORK( 1 )
501             T( N2, N2 ) = T( 11 )
502             T( 12 ) = -T( 21 )
503          END IF
504          WORK( M*M ) = ONE
505          T( M, M ) = ONE
506 *
507          IF( N1.GT.1 ) THEN
508             CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
509      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
510      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
511      $                   T( M, M-1 ) )
512             WORK( M*M ) = WORK( N2*M+N2+1 )
513             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
514             T( M, M ) = T( N2+1, N2+1 )
515             T( M-1, M ) = -T( M, M-1 )
516          END IF
517          CALL DGEMM( 'T''N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
518      $               LDA, ZERO, WORK( M*M+1 ), N2 )
519          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
520      $                LDA )
521          CALL DGEMM( 'T''N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
522      $               LDB, ZERO, WORK( M*M+1 ), N2 )
523          CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
524      $                LDB )
525          CALL DGEMM( 'N''N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
526      $               WORK( M*M+1 ), M )
527          CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
528          CALL DGEMM( 'N''N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
529      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
530          CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
531          CALL DGEMM( 'N''N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
532      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
533          CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
534          CALL DGEMM( 'T''N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
535      $               WORK, M )
536          CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
537 *
538 *        Accumulate transformations into Q and Z if requested.
539 *
540          IF( WANTQ ) THEN
541             CALL DGEMM( 'N''N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
542      $                  LDST, ZERO, WORK, N )
543             CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
544 *
545          END IF
546 *
547          IF( WANTZ ) THEN
548             CALL DGEMM( 'N''N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
549      $                  LDST, ZERO, WORK, N )
550             CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
551 *
552          END IF
553 *
554 *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
555 *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
556 *
557          I = J1 + M
558          IF( I.LE.N ) THEN
559             CALL DGEMM( 'T''N', M, N-I+1, M, ONE, LI, LDST,
560      $                  A( J1, I ), LDA, ZERO, WORK, M )
561             CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
562             CALL DGEMM( 'T''N', M, N-I+1, M, ONE, LI, LDST,
563      $                  B( J1, I ), LDA, ZERO, WORK, M )
564             CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
565          END IF
566          I = J1 - 1
567          IF( I.GT.0 ) THEN
568             CALL DGEMM( 'N''N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
569      $                  LDST, ZERO, WORK, I )
570             CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
571             CALL DGEMM( 'N''N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
572      $                  LDST, ZERO, WORK, I )
573             CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
574          END IF
575 *
576 *        Exit with INFO = 0 if swap was successfully performed.
577 *
578          RETURN
579 *
580       END IF
581 *
582 *     Exit with INFO = 1 if swap was rejected.
583 *
584    70 CONTINUE
585 *
586       INFO = 1
587       RETURN
588 *
589 *     End of DTGEX2
590 *
591       END