1       SUBROUTINE DTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          DIAG, NORM, UPLO
 13       INTEGER            INFO, N
 14       DOUBLE PRECISION   RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IWORK( * )
 18       DOUBLE PRECISION   AP( * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  DTPCON estimates the reciprocal of the condition number of a packed
 25 *  triangular matrix A, in either the 1-norm or the infinity-norm.
 26 *
 27 *  The norm of A is computed and an estimate is obtained for
 28 *  norm(inv(A)), then the reciprocal of the condition number is
 29 *  computed as
 30 *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  NORM    (input) CHARACTER*1
 36 *          Specifies whether the 1-norm condition number or the
 37 *          infinity-norm condition number is required:
 38 *          = '1' or 'O':  1-norm;
 39 *          = 'I':         Infinity-norm.
 40 *
 41 *  UPLO    (input) CHARACTER*1
 42 *          = 'U':  A is upper triangular;
 43 *          = 'L':  A is lower triangular.
 44 *
 45 *  DIAG    (input) CHARACTER*1
 46 *          = 'N':  A is non-unit triangular;
 47 *          = 'U':  A is unit triangular.
 48 *
 49 *  N       (input) INTEGER
 50 *          The order of the matrix A.  N >= 0.
 51 *
 52 *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 53 *          The upper or lower triangular matrix A, packed columnwise in
 54 *          a linear array.  The j-th column of A is stored in the array
 55 *          AP as follows:
 56 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 57 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 58 *          If DIAG = 'U', the diagonal elements of A are not referenced
 59 *          and are assumed to be 1.
 60 *
 61 *  RCOND   (output) DOUBLE PRECISION
 62 *          The reciprocal of the condition number of the matrix A,
 63 *          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 64 *
 65 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 66 *
 67 *  IWORK   (workspace) INTEGER array, dimension (N)
 68 *
 69 *  INFO    (output) INTEGER
 70 *          = 0:  successful exit
 71 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 72 *
 73 *  =====================================================================
 74 *
 75 *     .. Parameters ..
 76       DOUBLE PRECISION   ONE, ZERO
 77       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 78 *     ..
 79 *     .. Local Scalars ..
 80       LOGICAL            NOUNIT, ONENRM, UPPER
 81       CHARACTER          NORMIN
 82       INTEGER            IX, KASE, KASE1
 83       DOUBLE PRECISION   AINVNM, ANORM, SCALE, SMLNUM, XNORM
 84 *     ..
 85 *     .. Local Arrays ..
 86       INTEGER            ISAVE( 3 )
 87 *     ..
 88 *     .. External Functions ..
 89       LOGICAL            LSAME
 90       INTEGER            IDAMAX
 91       DOUBLE PRECISION   DLAMCH, DLANTP
 92       EXTERNAL           LSAME, IDAMAX, DLAMCH, DLANTP
 93 *     ..
 94 *     .. External Subroutines ..
 95       EXTERNAL           DLACN2, DLATPS, DRSCL, XERBLA
 96 *     ..
 97 *     .. Intrinsic Functions ..
 98       INTRINSIC          ABSDBLEMAX
 99 *     ..
100 *     .. Executable Statements ..
101 *
102 *     Test the input parameters.
103 *
104       INFO = 0
105       UPPER = LSAME( UPLO, 'U' )
106       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
107       NOUNIT = LSAME( DIAG, 'N' )
108 *
109       IF.NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
110          INFO = -1
111       ELSE IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
112          INFO = -2
113       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
114          INFO = -3
115       ELSE IF( N.LT.0 ) THEN
116          INFO = -4
117       END IF
118       IF( INFO.NE.0 ) THEN
119          CALL XERBLA( 'DTPCON'-INFO )
120          RETURN
121       END IF
122 *
123 *     Quick return if possible
124 *
125       IF( N.EQ.0 ) THEN
126          RCOND = ONE
127          RETURN
128       END IF
129 *
130       RCOND = ZERO
131       SMLNUM = DLAMCH( 'Safe minimum' )*DBLEMAX1, N ) )
132 *
133 *     Compute the norm of the triangular matrix A.
134 *
135       ANORM = DLANTP( NORM, UPLO, DIAG, N, AP, WORK )
136 *
137 *     Continue only if ANORM > 0.
138 *
139       IF( ANORM.GT.ZERO ) THEN
140 *
141 *        Estimate the norm of the inverse of A.
142 *
143          AINVNM = ZERO
144          NORMIN = 'N'
145          IF( ONENRM ) THEN
146             KASE1 = 1
147          ELSE
148             KASE1 = 2
149          END IF
150          KASE = 0
151    10    CONTINUE
152          CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
153          IF( KASE.NE.0 ) THEN
154             IF( KASE.EQ.KASE1 ) THEN
155 *
156 *              Multiply by inv(A).
157 *
158                CALL DLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
159      $                      WORK, SCALE, WORK( 2*N+1 ), INFO )
160             ELSE
161 *
162 *              Multiply by inv(A**T).
163 *
164                CALL DLATPS( UPLO, 'Transpose', DIAG, NORMIN, N, AP,
165      $                      WORK, SCALE, WORK( 2*N+1 ), INFO )
166             END IF
167             NORMIN = 'Y'
168 *
169 *           Multiply by 1/SCALE if doing so will not cause overflow.
170 *
171             IFSCALE.NE.ONE ) THEN
172                IX = IDAMAX( N, WORK, 1 )
173                XNORM = ABS( WORK( IX ) )
174                IFSCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
175      $            GO TO 20
176                CALL DRSCL( N, SCALE, WORK, 1 )
177             END IF
178             GO TO 10
179          END IF
180 *
181 *        Compute the estimate of the reciprocal condition number.
182 *
183          IF( AINVNM.NE.ZERO )
184      $      RCOND = ( ONE / ANORM ) / AINVNM
185       END IF
186 *
187    20 CONTINUE
188       RETURN
189 *
190 *     End of DTPCON
191 *
192       END