1       SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   AP( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DTPTRI computes the inverse of a real upper or lower triangular
 20 *  matrix A stored in packed format.
 21 *
 22 *  Arguments
 23 *  =========
 24 *
 25 *  UPLO    (input) CHARACTER*1
 26 *          = 'U':  A is upper triangular;
 27 *          = 'L':  A is lower triangular.
 28 *
 29 *  DIAG    (input) CHARACTER*1
 30 *          = 'N':  A is non-unit triangular;
 31 *          = 'U':  A is unit triangular.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 37 *          On entry, the upper or lower triangular matrix A, stored
 38 *          columnwise in a linear array.  The j-th column of A is stored
 39 *          in the array AP as follows:
 40 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 41 *          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
 42 *          See below for further details.
 43 *          On exit, the (triangular) inverse of the original matrix, in
 44 *          the same packed storage format.
 45 *
 46 *  INFO    (output) INTEGER
 47 *          = 0:  successful exit
 48 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 49 *          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
 50 *                matrix is singular and its inverse can not be computed.
 51 *
 52 *  Further Details
 53 *  ===============
 54 *
 55 *  A triangular matrix A can be transferred to packed storage using one
 56 *  of the following program segments:
 57 *
 58 *  UPLO = 'U':                      UPLO = 'L':
 59 *
 60 *        JC = 1                           JC = 1
 61 *        DO 2 J = 1, N                    DO 2 J = 1, N
 62 *           DO 1 I = 1, J                    DO 1 I = J, N
 63 *              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
 64 *      1    CONTINUE                    1    CONTINUE
 65 *           JC = JC + J                      JC = JC + N - J + 1
 66 *      2 CONTINUE                       2 CONTINUE
 67 *
 68 *  =====================================================================
 69 *
 70 *     .. Parameters ..
 71       DOUBLE PRECISION   ONE, ZERO
 72       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 73 *     ..
 74 *     .. Local Scalars ..
 75       LOGICAL            NOUNIT, UPPER
 76       INTEGER            J, JC, JCLAST, JJ
 77       DOUBLE PRECISION   AJJ
 78 *     ..
 79 *     .. External Functions ..
 80       LOGICAL            LSAME
 81       EXTERNAL           LSAME
 82 *     ..
 83 *     .. External Subroutines ..
 84       EXTERNAL           DSCAL, DTPMV, XERBLA
 85 *     ..
 86 *     .. Executable Statements ..
 87 *
 88 *     Test the input parameters.
 89 *
 90       INFO = 0
 91       UPPER = LSAME( UPLO, 'U' )
 92       NOUNIT = LSAME( DIAG, 'N' )
 93       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 94          INFO = -1
 95       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 96          INFO = -2
 97       ELSE IF( N.LT.0 ) THEN
 98          INFO = -3
 99       END IF
100       IF( INFO.NE.0 ) THEN
101          CALL XERBLA( 'DTPTRI'-INFO )
102          RETURN
103       END IF
104 *
105 *     Check for singularity if non-unit.
106 *
107       IF( NOUNIT ) THEN
108          IF( UPPER ) THEN
109             JJ = 0
110             DO 10 INFO = 1, N
111                JJ = JJ + INFO
112                IF( AP( JJ ).EQ.ZERO )
113      $            RETURN
114    10       CONTINUE
115          ELSE
116             JJ = 1
117             DO 20 INFO = 1, N
118                IF( AP( JJ ).EQ.ZERO )
119      $            RETURN
120                JJ = JJ + N - INFO + 1
121    20       CONTINUE
122          END IF
123          INFO = 0
124       END IF
125 *
126       IF( UPPER ) THEN
127 *
128 *        Compute inverse of upper triangular matrix.
129 *
130          JC = 1
131          DO 30 J = 1, N
132             IF( NOUNIT ) THEN
133                AP( JC+J-1 ) = ONE / AP( JC+J-1 )
134                AJJ = -AP( JC+J-1 )
135             ELSE
136                AJJ = -ONE
137             END IF
138 *
139 *           Compute elements 1:j-1 of j-th column.
140 *
141             CALL DTPMV( 'Upper''No transpose', DIAG, J-1, AP,
142      $                  AP( JC ), 1 )
143             CALL DSCAL( J-1, AJJ, AP( JC ), 1 )
144             JC = JC + J
145    30    CONTINUE
146 *
147       ELSE
148 *
149 *        Compute inverse of lower triangular matrix.
150 *
151          JC = N*( N+1 ) / 2
152          DO 40 J = N, 1-1
153             IF( NOUNIT ) THEN
154                AP( JC ) = ONE / AP( JC )
155                AJJ = -AP( JC )
156             ELSE
157                AJJ = -ONE
158             END IF
159             IF( J.LT.N ) THEN
160 *
161 *              Compute elements j+1:n of j-th column.
162 *
163                CALL DTPMV( 'Lower''No transpose', DIAG, N-J,
164      $                     AP( JCLAST ), AP( JC+1 ), 1 )
165                CALL DSCAL( N-J, AJJ, AP( JC+1 ), 1 )
166             END IF
167             JCLAST = JC
168             JC = JC - N + J - 2
169    40    CONTINUE
170       END IF
171 *
172       RETURN
173 *
174 *     End of DTPTRI
175 *
176       END