1 SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 *
5 * -- Contributed by Fred Gustavson of the IBM Watson Research Center --
6 * -- April 2011 --
7 *
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 *
11 * ..
12 * .. Scalar Arguments ..
13 CHARACTER TRANSR, UPLO
14 INTEGER INFO, N
15 * ..
16 * .. Array Arguments ..
17 DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
18 *
19 * Purpose
20 * =======
21 *
22 * DTPTTF copies a triangular matrix A from standard packed format (TP)
23 * to rectangular full packed format (TF).
24 *
25 * Arguments
26 * =========
27 *
28 * TRANSR (input) CHARACTER*1
29 * = 'N': ARF in Normal format is wanted;
30 * = 'T': ARF in Conjugate-transpose format is wanted.
31 *
32 * UPLO (input) CHARACTER*1
33 * = 'U': A is upper triangular;
34 * = 'L': A is lower triangular.
35 *
36 * N (input) INTEGER
37 * The order of the matrix A. N >= 0.
38 *
39 * AP (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
40 * On entry, the upper or lower triangular matrix A, packed
41 * columnwise in a linear array. The j-th column of A is stored
42 * in the array AP as follows:
43 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
44 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
45 *
46 * ARF (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
47 * On exit, the upper or lower triangular matrix A stored in
48 * RFP format. For a further discussion see Notes below.
49 *
50 * INFO (output) INTEGER
51 * = 0: successful exit
52 * < 0: if INFO = -i, the i-th argument had an illegal value
53 *
54 * Further Details
55 * ===============
56 *
57 * We first consider Rectangular Full Packed (RFP) Format when N is
58 * even. We give an example where N = 6.
59 *
60 * AP is Upper AP is Lower
61 *
62 * 00 01 02 03 04 05 00
63 * 11 12 13 14 15 10 11
64 * 22 23 24 25 20 21 22
65 * 33 34 35 30 31 32 33
66 * 44 45 40 41 42 43 44
67 * 55 50 51 52 53 54 55
68 *
69 *
70 * Let TRANSR = 'N'. RFP holds AP as follows:
71 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
72 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of
73 * the transpose of the first three columns of AP upper.
74 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
75 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of
76 * the transpose of the last three columns of AP lower.
77 * This covers the case N even and TRANSR = 'N'.
78 *
79 * RFP A RFP A
80 *
81 * 03 04 05 33 43 53
82 * 13 14 15 00 44 54
83 * 23 24 25 10 11 55
84 * 33 34 35 20 21 22
85 * 00 44 45 30 31 32
86 * 01 11 55 40 41 42
87 * 02 12 22 50 51 52
88 *
89 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
90 * transpose of RFP A above. One therefore gets:
91 *
92 *
93 * RFP A RFP A
94 *
95 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50
96 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51
97 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52
98 *
99 *
100 * We then consider Rectangular Full Packed (RFP) Format when N is
101 * odd. We give an example where N = 5.
102 *
103 * AP is Upper AP is Lower
104 *
105 * 00 01 02 03 04 00
106 * 11 12 13 14 10 11
107 * 22 23 24 20 21 22
108 * 33 34 30 31 32 33
109 * 44 40 41 42 43 44
110 *
111 *
112 * Let TRANSR = 'N'. RFP holds AP as follows:
113 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
114 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of
115 * the transpose of the first two columns of AP upper.
116 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
117 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of
118 * the transpose of the last two columns of AP lower.
119 * This covers the case N odd and TRANSR = 'N'.
120 *
121 * RFP A RFP A
122 *
123 * 02 03 04 00 33 43
124 * 12 13 14 10 11 44
125 * 22 23 24 20 21 22
126 * 00 33 34 30 31 32
127 * 01 11 44 40 41 42
128 *
129 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
130 * transpose of RFP A above. One therefore gets:
131 *
132 * RFP A RFP A
133 *
134 * 02 12 22 00 01 00 10 20 30 40 50
135 * 03 13 23 33 11 33 11 21 31 41 51
136 * 04 14 24 34 44 43 44 22 32 42 52
137 *
138 * =====================================================================
139 *
140 * .. Parameters ..
141 * ..
142 * .. Local Scalars ..
143 LOGICAL LOWER, NISODD, NORMALTRANSR
144 INTEGER N1, N2, K, NT
145 INTEGER I, J, IJ
146 INTEGER IJP, JP, LDA, JS
147 * ..
148 * .. External Functions ..
149 LOGICAL LSAME
150 EXTERNAL LSAME
151 * ..
152 * .. External Subroutines ..
153 EXTERNAL XERBLA
154 * ..
155 * .. Intrinsic Functions ..
156 INTRINSIC MOD
157 * ..
158 * .. Executable Statements ..
159 *
160 * Test the input parameters.
161 *
162 INFO = 0
163 NORMALTRANSR = LSAME( TRANSR, 'N' )
164 LOWER = LSAME( UPLO, 'L' )
165 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
166 INFO = -1
167 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
168 INFO = -2
169 ELSE IF( N.LT.0 ) THEN
170 INFO = -3
171 END IF
172 IF( INFO.NE.0 ) THEN
173 CALL XERBLA( 'DTPTTF', -INFO )
174 RETURN
175 END IF
176 *
177 * Quick return if possible
178 *
179 IF( N.EQ.0 )
180 $ RETURN
181 *
182 IF( N.EQ.1 ) THEN
183 IF( NORMALTRANSR ) THEN
184 ARF( 0 ) = AP( 0 )
185 ELSE
186 ARF( 0 ) = AP( 0 )
187 END IF
188 RETURN
189 END IF
190 *
191 * Size of array ARF(0:NT-1)
192 *
193 NT = N*( N+1 ) / 2
194 *
195 * Set N1 and N2 depending on LOWER
196 *
197 IF( LOWER ) THEN
198 N2 = N / 2
199 N1 = N - N2
200 ELSE
201 N1 = N / 2
202 N2 = N - N1
203 END IF
204 *
205 * If N is odd, set NISODD = .TRUE.
206 * If N is even, set K = N/2 and NISODD = .FALSE.
207 *
208 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
209 * where noe = 0 if n is even, noe = 1 if n is odd
210 *
211 IF( MOD( N, 2 ).EQ.0 ) THEN
212 K = N / 2
213 NISODD = .FALSE.
214 LDA = N + 1
215 ELSE
216 NISODD = .TRUE.
217 LDA = N
218 END IF
219 *
220 * ARF^C has lda rows and n+1-noe cols
221 *
222 IF( .NOT.NORMALTRANSR )
223 $ LDA = ( N+1 ) / 2
224 *
225 * start execution: there are eight cases
226 *
227 IF( NISODD ) THEN
228 *
229 * N is odd
230 *
231 IF( NORMALTRANSR ) THEN
232 *
233 * N is odd and TRANSR = 'N'
234 *
235 IF( LOWER ) THEN
236 *
237 * N is odd, TRANSR = 'N', and UPLO = 'L'
238 *
239 IJP = 0
240 JP = 0
241 DO J = 0, N2
242 DO I = J, N - 1
243 IJ = I + JP
244 ARF( IJ ) = AP( IJP )
245 IJP = IJP + 1
246 END DO
247 JP = JP + LDA
248 END DO
249 DO I = 0, N2 - 1
250 DO J = 1 + I, N2
251 IJ = I + J*LDA
252 ARF( IJ ) = AP( IJP )
253 IJP = IJP + 1
254 END DO
255 END DO
256 *
257 ELSE
258 *
259 * N is odd, TRANSR = 'N', and UPLO = 'U'
260 *
261 IJP = 0
262 DO J = 0, N1 - 1
263 IJ = N2 + J
264 DO I = 0, J
265 ARF( IJ ) = AP( IJP )
266 IJP = IJP + 1
267 IJ = IJ + LDA
268 END DO
269 END DO
270 JS = 0
271 DO J = N1, N - 1
272 IJ = JS
273 DO IJ = JS, JS + J
274 ARF( IJ ) = AP( IJP )
275 IJP = IJP + 1
276 END DO
277 JS = JS + LDA
278 END DO
279 *
280 END IF
281 *
282 ELSE
283 *
284 * N is odd and TRANSR = 'T'
285 *
286 IF( LOWER ) THEN
287 *
288 * N is odd, TRANSR = 'T', and UPLO = 'L'
289 *
290 IJP = 0
291 DO I = 0, N2
292 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
293 ARF( IJ ) = AP( IJP )
294 IJP = IJP + 1
295 END DO
296 END DO
297 JS = 1
298 DO J = 0, N2 - 1
299 DO IJ = JS, JS + N2 - J - 1
300 ARF( IJ ) = AP( IJP )
301 IJP = IJP + 1
302 END DO
303 JS = JS + LDA + 1
304 END DO
305 *
306 ELSE
307 *
308 * N is odd, TRANSR = 'T', and UPLO = 'U'
309 *
310 IJP = 0
311 JS = N2*LDA
312 DO J = 0, N1 - 1
313 DO IJ = JS, JS + J
314 ARF( IJ ) = AP( IJP )
315 IJP = IJP + 1
316 END DO
317 JS = JS + LDA
318 END DO
319 DO I = 0, N1
320 DO IJ = I, I + ( N1+I )*LDA, LDA
321 ARF( IJ ) = AP( IJP )
322 IJP = IJP + 1
323 END DO
324 END DO
325 *
326 END IF
327 *
328 END IF
329 *
330 ELSE
331 *
332 * N is even
333 *
334 IF( NORMALTRANSR ) THEN
335 *
336 * N is even and TRANSR = 'N'
337 *
338 IF( LOWER ) THEN
339 *
340 * N is even, TRANSR = 'N', and UPLO = 'L'
341 *
342 IJP = 0
343 JP = 0
344 DO J = 0, K - 1
345 DO I = J, N - 1
346 IJ = 1 + I + JP
347 ARF( IJ ) = AP( IJP )
348 IJP = IJP + 1
349 END DO
350 JP = JP + LDA
351 END DO
352 DO I = 0, K - 1
353 DO J = I, K - 1
354 IJ = I + J*LDA
355 ARF( IJ ) = AP( IJP )
356 IJP = IJP + 1
357 END DO
358 END DO
359 *
360 ELSE
361 *
362 * N is even, TRANSR = 'N', and UPLO = 'U'
363 *
364 IJP = 0
365 DO J = 0, K - 1
366 IJ = K + 1 + J
367 DO I = 0, J
368 ARF( IJ ) = AP( IJP )
369 IJP = IJP + 1
370 IJ = IJ + LDA
371 END DO
372 END DO
373 JS = 0
374 DO J = K, N - 1
375 IJ = JS
376 DO IJ = JS, JS + J
377 ARF( IJ ) = AP( IJP )
378 IJP = IJP + 1
379 END DO
380 JS = JS + LDA
381 END DO
382 *
383 END IF
384 *
385 ELSE
386 *
387 * N is even and TRANSR = 'T'
388 *
389 IF( LOWER ) THEN
390 *
391 * N is even, TRANSR = 'T', and UPLO = 'L'
392 *
393 IJP = 0
394 DO I = 0, K - 1
395 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
396 ARF( IJ ) = AP( IJP )
397 IJP = IJP + 1
398 END DO
399 END DO
400 JS = 0
401 DO J = 0, K - 1
402 DO IJ = JS, JS + K - J - 1
403 ARF( IJ ) = AP( IJP )
404 IJP = IJP + 1
405 END DO
406 JS = JS + LDA + 1
407 END DO
408 *
409 ELSE
410 *
411 * N is even, TRANSR = 'T', and UPLO = 'U'
412 *
413 IJP = 0
414 JS = ( K+1 )*LDA
415 DO J = 0, K - 1
416 DO IJ = JS, JS + J
417 ARF( IJ ) = AP( IJP )
418 IJP = IJP + 1
419 END DO
420 JS = JS + LDA
421 END DO
422 DO I = 0, K - 1
423 DO IJ = I, I + ( K+I )*LDA, LDA
424 ARF( IJ ) = AP( IJP )
425 IJP = IJP + 1
426 END DO
427 END DO
428 *
429 END IF
430 *
431 END IF
432 *
433 END IF
434 *
435 RETURN
436 *
437 * End of DTPTTF
438 *
439 END
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 *
5 * -- Contributed by Fred Gustavson of the IBM Watson Research Center --
6 * -- April 2011 --
7 *
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 *
11 * ..
12 * .. Scalar Arguments ..
13 CHARACTER TRANSR, UPLO
14 INTEGER INFO, N
15 * ..
16 * .. Array Arguments ..
17 DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
18 *
19 * Purpose
20 * =======
21 *
22 * DTPTTF copies a triangular matrix A from standard packed format (TP)
23 * to rectangular full packed format (TF).
24 *
25 * Arguments
26 * =========
27 *
28 * TRANSR (input) CHARACTER*1
29 * = 'N': ARF in Normal format is wanted;
30 * = 'T': ARF in Conjugate-transpose format is wanted.
31 *
32 * UPLO (input) CHARACTER*1
33 * = 'U': A is upper triangular;
34 * = 'L': A is lower triangular.
35 *
36 * N (input) INTEGER
37 * The order of the matrix A. N >= 0.
38 *
39 * AP (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
40 * On entry, the upper or lower triangular matrix A, packed
41 * columnwise in a linear array. The j-th column of A is stored
42 * in the array AP as follows:
43 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
44 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
45 *
46 * ARF (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
47 * On exit, the upper or lower triangular matrix A stored in
48 * RFP format. For a further discussion see Notes below.
49 *
50 * INFO (output) INTEGER
51 * = 0: successful exit
52 * < 0: if INFO = -i, the i-th argument had an illegal value
53 *
54 * Further Details
55 * ===============
56 *
57 * We first consider Rectangular Full Packed (RFP) Format when N is
58 * even. We give an example where N = 6.
59 *
60 * AP is Upper AP is Lower
61 *
62 * 00 01 02 03 04 05 00
63 * 11 12 13 14 15 10 11
64 * 22 23 24 25 20 21 22
65 * 33 34 35 30 31 32 33
66 * 44 45 40 41 42 43 44
67 * 55 50 51 52 53 54 55
68 *
69 *
70 * Let TRANSR = 'N'. RFP holds AP as follows:
71 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
72 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of
73 * the transpose of the first three columns of AP upper.
74 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
75 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of
76 * the transpose of the last three columns of AP lower.
77 * This covers the case N even and TRANSR = 'N'.
78 *
79 * RFP A RFP A
80 *
81 * 03 04 05 33 43 53
82 * 13 14 15 00 44 54
83 * 23 24 25 10 11 55
84 * 33 34 35 20 21 22
85 * 00 44 45 30 31 32
86 * 01 11 55 40 41 42
87 * 02 12 22 50 51 52
88 *
89 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
90 * transpose of RFP A above. One therefore gets:
91 *
92 *
93 * RFP A RFP A
94 *
95 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50
96 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51
97 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52
98 *
99 *
100 * We then consider Rectangular Full Packed (RFP) Format when N is
101 * odd. We give an example where N = 5.
102 *
103 * AP is Upper AP is Lower
104 *
105 * 00 01 02 03 04 00
106 * 11 12 13 14 10 11
107 * 22 23 24 20 21 22
108 * 33 34 30 31 32 33
109 * 44 40 41 42 43 44
110 *
111 *
112 * Let TRANSR = 'N'. RFP holds AP as follows:
113 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
114 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of
115 * the transpose of the first two columns of AP upper.
116 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
117 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of
118 * the transpose of the last two columns of AP lower.
119 * This covers the case N odd and TRANSR = 'N'.
120 *
121 * RFP A RFP A
122 *
123 * 02 03 04 00 33 43
124 * 12 13 14 10 11 44
125 * 22 23 24 20 21 22
126 * 00 33 34 30 31 32
127 * 01 11 44 40 41 42
128 *
129 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
130 * transpose of RFP A above. One therefore gets:
131 *
132 * RFP A RFP A
133 *
134 * 02 12 22 00 01 00 10 20 30 40 50
135 * 03 13 23 33 11 33 11 21 31 41 51
136 * 04 14 24 34 44 43 44 22 32 42 52
137 *
138 * =====================================================================
139 *
140 * .. Parameters ..
141 * ..
142 * .. Local Scalars ..
143 LOGICAL LOWER, NISODD, NORMALTRANSR
144 INTEGER N1, N2, K, NT
145 INTEGER I, J, IJ
146 INTEGER IJP, JP, LDA, JS
147 * ..
148 * .. External Functions ..
149 LOGICAL LSAME
150 EXTERNAL LSAME
151 * ..
152 * .. External Subroutines ..
153 EXTERNAL XERBLA
154 * ..
155 * .. Intrinsic Functions ..
156 INTRINSIC MOD
157 * ..
158 * .. Executable Statements ..
159 *
160 * Test the input parameters.
161 *
162 INFO = 0
163 NORMALTRANSR = LSAME( TRANSR, 'N' )
164 LOWER = LSAME( UPLO, 'L' )
165 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
166 INFO = -1
167 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
168 INFO = -2
169 ELSE IF( N.LT.0 ) THEN
170 INFO = -3
171 END IF
172 IF( INFO.NE.0 ) THEN
173 CALL XERBLA( 'DTPTTF', -INFO )
174 RETURN
175 END IF
176 *
177 * Quick return if possible
178 *
179 IF( N.EQ.0 )
180 $ RETURN
181 *
182 IF( N.EQ.1 ) THEN
183 IF( NORMALTRANSR ) THEN
184 ARF( 0 ) = AP( 0 )
185 ELSE
186 ARF( 0 ) = AP( 0 )
187 END IF
188 RETURN
189 END IF
190 *
191 * Size of array ARF(0:NT-1)
192 *
193 NT = N*( N+1 ) / 2
194 *
195 * Set N1 and N2 depending on LOWER
196 *
197 IF( LOWER ) THEN
198 N2 = N / 2
199 N1 = N - N2
200 ELSE
201 N1 = N / 2
202 N2 = N - N1
203 END IF
204 *
205 * If N is odd, set NISODD = .TRUE.
206 * If N is even, set K = N/2 and NISODD = .FALSE.
207 *
208 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
209 * where noe = 0 if n is even, noe = 1 if n is odd
210 *
211 IF( MOD( N, 2 ).EQ.0 ) THEN
212 K = N / 2
213 NISODD = .FALSE.
214 LDA = N + 1
215 ELSE
216 NISODD = .TRUE.
217 LDA = N
218 END IF
219 *
220 * ARF^C has lda rows and n+1-noe cols
221 *
222 IF( .NOT.NORMALTRANSR )
223 $ LDA = ( N+1 ) / 2
224 *
225 * start execution: there are eight cases
226 *
227 IF( NISODD ) THEN
228 *
229 * N is odd
230 *
231 IF( NORMALTRANSR ) THEN
232 *
233 * N is odd and TRANSR = 'N'
234 *
235 IF( LOWER ) THEN
236 *
237 * N is odd, TRANSR = 'N', and UPLO = 'L'
238 *
239 IJP = 0
240 JP = 0
241 DO J = 0, N2
242 DO I = J, N - 1
243 IJ = I + JP
244 ARF( IJ ) = AP( IJP )
245 IJP = IJP + 1
246 END DO
247 JP = JP + LDA
248 END DO
249 DO I = 0, N2 - 1
250 DO J = 1 + I, N2
251 IJ = I + J*LDA
252 ARF( IJ ) = AP( IJP )
253 IJP = IJP + 1
254 END DO
255 END DO
256 *
257 ELSE
258 *
259 * N is odd, TRANSR = 'N', and UPLO = 'U'
260 *
261 IJP = 0
262 DO J = 0, N1 - 1
263 IJ = N2 + J
264 DO I = 0, J
265 ARF( IJ ) = AP( IJP )
266 IJP = IJP + 1
267 IJ = IJ + LDA
268 END DO
269 END DO
270 JS = 0
271 DO J = N1, N - 1
272 IJ = JS
273 DO IJ = JS, JS + J
274 ARF( IJ ) = AP( IJP )
275 IJP = IJP + 1
276 END DO
277 JS = JS + LDA
278 END DO
279 *
280 END IF
281 *
282 ELSE
283 *
284 * N is odd and TRANSR = 'T'
285 *
286 IF( LOWER ) THEN
287 *
288 * N is odd, TRANSR = 'T', and UPLO = 'L'
289 *
290 IJP = 0
291 DO I = 0, N2
292 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
293 ARF( IJ ) = AP( IJP )
294 IJP = IJP + 1
295 END DO
296 END DO
297 JS = 1
298 DO J = 0, N2 - 1
299 DO IJ = JS, JS + N2 - J - 1
300 ARF( IJ ) = AP( IJP )
301 IJP = IJP + 1
302 END DO
303 JS = JS + LDA + 1
304 END DO
305 *
306 ELSE
307 *
308 * N is odd, TRANSR = 'T', and UPLO = 'U'
309 *
310 IJP = 0
311 JS = N2*LDA
312 DO J = 0, N1 - 1
313 DO IJ = JS, JS + J
314 ARF( IJ ) = AP( IJP )
315 IJP = IJP + 1
316 END DO
317 JS = JS + LDA
318 END DO
319 DO I = 0, N1
320 DO IJ = I, I + ( N1+I )*LDA, LDA
321 ARF( IJ ) = AP( IJP )
322 IJP = IJP + 1
323 END DO
324 END DO
325 *
326 END IF
327 *
328 END IF
329 *
330 ELSE
331 *
332 * N is even
333 *
334 IF( NORMALTRANSR ) THEN
335 *
336 * N is even and TRANSR = 'N'
337 *
338 IF( LOWER ) THEN
339 *
340 * N is even, TRANSR = 'N', and UPLO = 'L'
341 *
342 IJP = 0
343 JP = 0
344 DO J = 0, K - 1
345 DO I = J, N - 1
346 IJ = 1 + I + JP
347 ARF( IJ ) = AP( IJP )
348 IJP = IJP + 1
349 END DO
350 JP = JP + LDA
351 END DO
352 DO I = 0, K - 1
353 DO J = I, K - 1
354 IJ = I + J*LDA
355 ARF( IJ ) = AP( IJP )
356 IJP = IJP + 1
357 END DO
358 END DO
359 *
360 ELSE
361 *
362 * N is even, TRANSR = 'N', and UPLO = 'U'
363 *
364 IJP = 0
365 DO J = 0, K - 1
366 IJ = K + 1 + J
367 DO I = 0, J
368 ARF( IJ ) = AP( IJP )
369 IJP = IJP + 1
370 IJ = IJ + LDA
371 END DO
372 END DO
373 JS = 0
374 DO J = K, N - 1
375 IJ = JS
376 DO IJ = JS, JS + J
377 ARF( IJ ) = AP( IJP )
378 IJP = IJP + 1
379 END DO
380 JS = JS + LDA
381 END DO
382 *
383 END IF
384 *
385 ELSE
386 *
387 * N is even and TRANSR = 'T'
388 *
389 IF( LOWER ) THEN
390 *
391 * N is even, TRANSR = 'T', and UPLO = 'L'
392 *
393 IJP = 0
394 DO I = 0, K - 1
395 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
396 ARF( IJ ) = AP( IJP )
397 IJP = IJP + 1
398 END DO
399 END DO
400 JS = 0
401 DO J = 0, K - 1
402 DO IJ = JS, JS + K - J - 1
403 ARF( IJ ) = AP( IJP )
404 IJP = IJP + 1
405 END DO
406 JS = JS + LDA + 1
407 END DO
408 *
409 ELSE
410 *
411 * N is even, TRANSR = 'T', and UPLO = 'U'
412 *
413 IJP = 0
414 JS = ( K+1 )*LDA
415 DO J = 0, K - 1
416 DO IJ = JS, JS + J
417 ARF( IJ ) = AP( IJP )
418 IJP = IJP + 1
419 END DO
420 JS = JS + LDA
421 END DO
422 DO I = 0, K - 1
423 DO IJ = I, I + ( K+I )*LDA, LDA
424 ARF( IJ ) = AP( IJP )
425 IJP = IJP + 1
426 END DO
427 END DO
428 *
429 END IF
430 *
431 END IF
432 *
433 END IF
434 *
435 RETURN
436 *
437 * End of DTPTTF
438 *
439 END