1       SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DTRTRI computes the inverse of a real upper or lower triangular
 20 *  matrix A.
 21 *
 22 *  This is the Level 3 BLAS version of the algorithm.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          = 'U':  A is upper triangular;
 29 *          = 'L':  A is lower triangular.
 30 *
 31 *  DIAG    (input) CHARACTER*1
 32 *          = 'N':  A is non-unit triangular;
 33 *          = 'U':  A is unit triangular.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 39 *          On entry, the triangular matrix A.  If UPLO = 'U', the
 40 *          leading N-by-N upper triangular part of the array A contains
 41 *          the upper triangular matrix, and the strictly lower
 42 *          triangular part of A is not referenced.  If UPLO = 'L', the
 43 *          leading N-by-N lower triangular part of the array A contains
 44 *          the lower triangular matrix, and the strictly upper
 45 *          triangular part of A is not referenced.  If DIAG = 'U', the
 46 *          diagonal elements of A are also not referenced and are
 47 *          assumed to be 1.
 48 *          On exit, the (triangular) inverse of the original matrix, in
 49 *          the same storage format.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument had an illegal value
 57 *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
 58 *               matrix is singular and its inverse can not be computed.
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       DOUBLE PRECISION   ONE, ZERO
 64       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 65 *     ..
 66 *     .. Local Scalars ..
 67       LOGICAL            NOUNIT, UPPER
 68       INTEGER            J, JB, NB, NN
 69 *     ..
 70 *     .. External Functions ..
 71       LOGICAL            LSAME
 72       INTEGER            ILAENV
 73       EXTERNAL           LSAME, ILAENV
 74 *     ..
 75 *     .. External Subroutines ..
 76       EXTERNAL           DTRMM, DTRSM, DTRTI2, XERBLA
 77 *     ..
 78 *     .. Intrinsic Functions ..
 79       INTRINSIC          MAXMIN
 80 *     ..
 81 *     .. Executable Statements ..
 82 *
 83 *     Test the input parameters.
 84 *
 85       INFO = 0
 86       UPPER = LSAME( UPLO, 'U' )
 87       NOUNIT = LSAME( DIAG, 'N' )
 88       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 89          INFO = -1
 90       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 91          INFO = -2
 92       ELSE IF( N.LT.0 ) THEN
 93          INFO = -3
 94       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 95          INFO = -5
 96       END IF
 97       IF( INFO.NE.0 ) THEN
 98          CALL XERBLA( 'DTRTRI'-INFO )
 99          RETURN
100       END IF
101 *
102 *     Quick return if possible
103 *
104       IF( N.EQ.0 )
105      $   RETURN
106 *
107 *     Check for singularity if non-unit.
108 *
109       IF( NOUNIT ) THEN
110          DO 10 INFO = 1, N
111             IF( A( INFO, INFO ).EQ.ZERO )
112      $         RETURN
113    10    CONTINUE
114          INFO = 0
115       END IF
116 *
117 *     Determine the block size for this environment.
118 *
119       NB = ILAENV( 1'DTRTRI', UPLO // DIAG, N, -1-1-1 )
120       IF( NB.LE.1 .OR. NB.GE.N ) THEN
121 *
122 *        Use unblocked code
123 *
124          CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
125       ELSE
126 *
127 *        Use blocked code
128 *
129          IF( UPPER ) THEN
130 *
131 *           Compute inverse of upper triangular matrix
132 *
133             DO 20 J = 1, N, NB
134                JB = MIN( NB, N-J+1 )
135 *
136 *              Compute rows 1:j-1 of current block column
137 *
138                CALL DTRMM( 'Left''Upper''No transpose', DIAG, J-1,
139      $                     JB, ONE, A, LDA, A( 1, J ), LDA )
140                CALL DTRSM( 'Right''Upper''No transpose', DIAG, J-1,
141      $                     JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
142 *
143 *              Compute inverse of current diagonal block
144 *
145                CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
146    20       CONTINUE
147          ELSE
148 *
149 *           Compute inverse of lower triangular matrix
150 *
151             NN = ( ( N-1 ) / NB )*NB + 1
152             DO 30 J = NN, 1-NB
153                JB = MIN( NB, N-J+1 )
154                IF( J+JB.LE.N ) THEN
155 *
156 *                 Compute rows j+jb:n of current block column
157 *
158                   CALL DTRMM( 'Left''Lower''No transpose', DIAG,
159      $                        N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
160      $                        A( J+JB, J ), LDA )
161                   CALL DTRSM( 'Right''Lower''No transpose', DIAG,
162      $                        N-J-JB+1, JB, -ONE, A( J, J ), LDA,
163      $                        A( J+JB, J ), LDA )
164                END IF
165 *
166 *              Compute inverse of current diagonal block
167 *
168                CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
169    30       CONTINUE
170          END IF
171       END IF
172 *
173       RETURN
174 *
175 *     End of DTRTRI
176 *
177       END