1       SUBROUTINE DTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, TRANS, UPLO
 11       INTEGER            INFO, LDA, LDB, N, NRHS
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DTRTRS solves a triangular system of the form
 21 *
 22 *     A * X = B  or  A**T * X = B,
 23 *
 24 *  where A is a triangular matrix of order N, and B is an N-by-NRHS
 25 *  matrix.  A check is made to verify that A is nonsingular.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  UPLO    (input) CHARACTER*1
 31 *          = 'U':  A is upper triangular;
 32 *          = 'L':  A is lower triangular.
 33 *
 34 *  TRANS   (input) CHARACTER*1
 35 *          Specifies the form of the system of equations:
 36 *          = 'N':  A * X = B  (No transpose)
 37 *          = 'T':  A**T * X = B  (Transpose)
 38 *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 39 *
 40 *  DIAG    (input) CHARACTER*1
 41 *          = 'N':  A is non-unit triangular;
 42 *          = 'U':  A is unit triangular.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrix A.  N >= 0.
 46 *
 47 *  NRHS    (input) INTEGER
 48 *          The number of right hand sides, i.e., the number of columns
 49 *          of the matrix B.  NRHS >= 0.
 50 *
 51 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 52 *          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
 53 *          upper triangular part of the array A contains the upper
 54 *          triangular matrix, and the strictly lower triangular part of
 55 *          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
 56 *          triangular part of the array A contains the lower triangular
 57 *          matrix, and the strictly upper triangular part of A is not
 58 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 59 *          also not referenced and are assumed to be 1.
 60 *
 61 *  LDA     (input) INTEGER
 62 *          The leading dimension of the array A.  LDA >= max(1,N).
 63 *
 64 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 65 *          On entry, the right hand side matrix B.
 66 *          On exit, if INFO = 0, the solution matrix X.
 67 *
 68 *  LDB     (input) INTEGER
 69 *          The leading dimension of the array B.  LDB >= max(1,N).
 70 *
 71 *  INFO    (output) INTEGER
 72 *          = 0:  successful exit
 73 *          < 0: if INFO = -i, the i-th argument had an illegal value
 74 *          > 0: if INFO = i, the i-th diagonal element of A is zero,
 75 *               indicating that the matrix is singular and the solutions
 76 *               X have not been computed.
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   ZERO, ONE
 82       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 83 *     ..
 84 *     .. Local Scalars ..
 85       LOGICAL            NOUNIT
 86 *     ..
 87 *     .. External Functions ..
 88       LOGICAL            LSAME
 89       EXTERNAL           LSAME
 90 *     ..
 91 *     .. External Subroutines ..
 92       EXTERNAL           DTRSM, XERBLA
 93 *     ..
 94 *     .. Intrinsic Functions ..
 95       INTRINSIC          MAX
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99 *     Test the input parameters.
100 *
101       INFO = 0
102       NOUNIT = LSAME( DIAG, 'N' )
103       IF.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
104          INFO = -1
105       ELSE IF.NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
106      $         LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
107          INFO = -2
108       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
109          INFO = -3
110       ELSE IF( N.LT.0 ) THEN
111          INFO = -4
112       ELSE IF( NRHS.LT.0 ) THEN
113          INFO = -5
114       ELSE IF( LDA.LT.MAX1, N ) ) THEN
115          INFO = -7
116       ELSE IF( LDB.LT.MAX1, N ) ) THEN
117          INFO = -9
118       END IF
119       IF( INFO.NE.0 ) THEN
120          CALL XERBLA( 'DTRTRS'-INFO )
121          RETURN
122       END IF
123 *
124 *     Quick return if possible
125 *
126       IF( N.EQ.0 )
127      $   RETURN
128 *
129 *     Check for singularity.
130 *
131       IF( NOUNIT ) THEN
132          DO 10 INFO = 1, N
133             IF( A( INFO, INFO ).EQ.ZERO )
134      $         RETURN
135    10    CONTINUE
136       END IF
137       INFO = 0
138 *
139 *     Solve A * x = b  or  A**T * x = b.
140 *
141       CALL DTRSM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, LDA, B,
142      $            LDB )
143 *
144       RETURN
145 *
146 *     End of DTRTRS
147 *
148       END