1       SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  2      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  3      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  4      $                   B22D, B22E, RWORK, LRWORK, INFO )
  5       IMPLICIT NONE
  6 *
  7 *  -- LAPACK routine (version 3.3.0) --
  8 *
  9 *  -- Contributed by Brian Sutton of the Randolph-Macon College --
 10 *  -- November 2010
 11 *
 12 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 13 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
 14 *
 15 *     .. Scalar Arguments ..
 16       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
 17       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
 18 *     ..
 19 *     .. Array Arguments ..
 20       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
 21      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
 22      $                   PHI( * ), THETA( * ), RWORK( * )
 23       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
 24      $                   V2T( LDV2T, * )
 25 *     ..
 26 *
 27 *  Purpose
 28 *  =======
 29 *
 30 *  ZBBCSD computes the CS decomposition of a unitary matrix in
 31 *  bidiagonal-block form,
 32 *
 33 *
 34 *      [ B11 | B12 0  0 ]
 35 *      [  0  |  0 -I  0 ]
 36 *  X = [----------------]
 37 *      [ B21 | B22 0  0 ]
 38 *      [  0  |  0  0  I ]
 39 *
 40 *                                [  C | -S  0  0 ]
 41 *                    [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
 42 *                  = [---------] [---------------] [---------]   .
 43 *                    [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
 44 *                                [  0 |  0  0  I ]
 45 *
 46 *  X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
 47 *  than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
 48 *  transposed and/or permuted. This can be done in constant time using
 49 *  the TRANS and SIGNS options. See ZUNCSD for details.)
 50 *
 51 *  The bidiagonal matrices B11, B12, B21, and B22 are represented
 52 *  implicitly by angles THETA(1:Q) and PHI(1:Q-1).
 53 *
 54 *  The unitary matrices U1, U2, V1T, and V2T are input/output.
 55 *  The input matrices are pre- or post-multiplied by the appropriate
 56 *  singular vector matrices.
 57 *
 58 *  Arguments
 59 *  =========
 60 *
 61 *  JOBU1   (input) CHARACTER
 62 *          = 'Y':      U1 is updated;
 63 *          otherwise:  U1 is not updated.
 64 *
 65 *  JOBU2   (input) CHARACTER
 66 *          = 'Y':      U2 is updated;
 67 *          otherwise:  U2 is not updated.
 68 *
 69 *  JOBV1T  (input) CHARACTER
 70 *          = 'Y':      V1T is updated;
 71 *          otherwise:  V1T is not updated.
 72 *
 73 *  JOBV2T  (input) CHARACTER
 74 *          = 'Y':      V2T is updated;
 75 *          otherwise:  V2T is not updated.
 76 *
 77 *  TRANS   (input) CHARACTER
 78 *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
 79 *                      order;
 80 *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
 81 *                      major order.
 82 *
 83 *  M       (input) INTEGER
 84 *          The number of rows and columns in X, the unitary matrix in
 85 *          bidiagonal-block form.
 86 *
 87 *  P       (input) INTEGER
 88 *          The number of rows in the top-left block of X. 0 <= P <= M.
 89 *
 90 *  Q       (input) INTEGER
 91 *          The number of columns in the top-left block of X.
 92 *          0 <= Q <= MIN(P,M-P,M-Q).
 93 *
 94 *  THETA   (input/output) DOUBLE PRECISION array, dimension (Q)
 95 *          On entry, the angles THETA(1),...,THETA(Q) that, along with
 96 *          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
 97 *          form. On exit, the angles whose cosines and sines define the
 98 *          diagonal blocks in the CS decomposition.
 99 *
100 *  PHI     (input/workspace) DOUBLE PRECISION array, dimension (Q-1)
101 *          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
102 *          THETA(Q), define the matrix in bidiagonal-block form.
103 *
104 *  U1      (input/output) COMPLEX*16 array, dimension (LDU1,P)
105 *          On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
106 *          by the left singular vector matrix common to [ B11 ; 0 ] and
107 *          [ B12 0 0 ; 0 -I 0 0 ].
108 *
109 *  LDU1    (input) INTEGER
110 *          The leading dimension of the array U1.
111 *
112 *  U2      (input/output) COMPLEX*16 array, dimension (LDU2,M-P)
113 *          On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
114 *          postmultiplied by the left singular vector matrix common to
115 *          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
116 *
117 *  LDU2    (input) INTEGER
118 *          The leading dimension of the array U2.
119 *
120 *  V1T     (input/output) COMPLEX*16 array, dimension (LDV1T,Q)
121 *          On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
122 *          by the conjugate transpose of the right singular vector
123 *          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
124 *
125 *  LDV1T   (input) INTEGER
126 *          The leading dimension of the array V1T.
127 *
128 *  V2T     (input/output) COMPLEX*16 array, dimenison (LDV2T,M-Q)
129 *          On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
130 *          premultiplied by the conjugate transpose of the right
131 *          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
132 *          [ B22 0 0 ; 0 0 I ].
133 *
134 *  LDV2T   (input) INTEGER
135 *          The leading dimension of the array V2T.
136 *
137 *  B11D    (output) DOUBLE PRECISION array, dimension (Q)
138 *          When ZBBCSD converges, B11D contains the cosines of THETA(1),
139 *          ..., THETA(Q). If ZBBCSD fails to converge, then B11D
140 *          contains the diagonal of the partially reduced top-left
141 *          block.
142 *
143 *  B11E    (output) DOUBLE PRECISION array, dimension (Q-1)
144 *          When ZBBCSD converges, B11E contains zeros. If ZBBCSD fails
145 *          to converge, then B11E contains the superdiagonal of the
146 *          partially reduced top-left block.
147 *
148 *  B12D    (output) DOUBLE PRECISION array, dimension (Q)
149 *          When ZBBCSD converges, B12D contains the negative sines of
150 *          THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
151 *          B12D contains the diagonal of the partially reduced top-right
152 *          block.
153 *
154 *  B12E    (output) DOUBLE PRECISION array, dimension (Q-1)
155 *          When ZBBCSD converges, B12E contains zeros. If ZBBCSD fails
156 *          to converge, then B12E contains the subdiagonal of the
157 *          partially reduced top-right block.
158 *
159 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
160 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
161 *
162 *  LRWORK  (input) INTEGER
163 *          The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
164 *
165 *          If LRWORK = -1, then a workspace query is assumed; the
166 *          routine only calculates the optimal size of the RWORK array,
167 *          returns this value as the first entry of the work array, and
168 *          no error message related to LRWORK is issued by XERBLA.
169 *
170 *  INFO    (output) INTEGER
171 *          = 0:  successful exit.
172 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
173 *          > 0:  if ZBBCSD did not converge, INFO specifies the number
174 *                of nonzero entries in PHI, and B11D, B11E, etc.,
175 *                contain the partially reduced matrix.
176 *
177 *  Reference
178 *  =========
179 *
180 *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
181 *      Algorithms, 50(1):33-65, 2009.
182 *
183 *  Internal Parameters
184 *  ===================
185 *
186 *  TOLMUL  DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
187 *          TOLMUL controls the convergence criterion of the QR loop.
188 *          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
189 *          are within TOLMUL*EPS of either bound.
190 *
191 *  ===================================================================
192 *
193 *     .. Parameters ..
194       INTEGER            MAXITR
195       PARAMETER          ( MAXITR = 6 )
196       DOUBLE PRECISION   HUNDRED, MEIGHTH, ONE, PIOVER2, TEN, ZERO
197       PARAMETER          ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
198      $                     ONE = 1.0D0, PIOVER2 = 1.57079632679489662D0,
199      $                     TEN = 10.0D0, ZERO = 0.0D0 )
200       COMPLEX*16         NEGONECOMPLEX
201       PARAMETER          ( NEGONECOMPLEX = (-1.0D0,0.0D0) )
202 *     ..
203 *     .. Local Scalars ..
204       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
205      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
206      $                   WANTV2T
207       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
208      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
209      $                   LRWORKMIN, LRWORKOPT, MAXIT, MINI
210       DOUBLE PRECISION   B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
211      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
212      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
213      $                   UNFL, X1, X2, Y1, Y2
214 *
215       EXTERNAL           DLARTGP, DLARTGS, DLAS2, XERBLA, ZLASR, ZSCAL,
216      $                   ZSWAP
217 *     ..
218 *     .. External Functions ..
219       DOUBLE PRECISION   DLAMCH
220       LOGICAL            LSAME
221       EXTERNAL           LSAME, DLAMCH
222 *     ..
223 *     .. Intrinsic Functions ..
224       INTRINSIC          ABSATAN2COSMAXMINSINSQRT
225 *     ..
226 *     .. Executable Statements ..
227 *
228 *     Test input arguments
229 *
230       INFO = 0
231       LQUERY = LRWORK .EQ. -1
232       WANTU1 = LSAME( JOBU1, 'Y' )
233       WANTU2 = LSAME( JOBU2, 'Y' )
234       WANTV1T = LSAME( JOBV1T, 'Y' )
235       WANTV2T = LSAME( JOBV2T, 'Y' )
236       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
237 *
238       IF( M .LT. 0 ) THEN
239          INFO = -6
240       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
241          INFO = -7
242       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
243          INFO = -8
244       ELSE IF( Q .GT. P .OR. Q .GT. M-.OR. Q .GT. M-Q ) THEN
245          INFO = -8
246       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
247          INFO = -12
248       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
249          INFO = -14
250       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
251          INFO = -16
252       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
253          INFO = -18
254       END IF
255 *
256 *     Quick return if Q = 0
257 *
258       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
259          LRWORKMIN = 1
260          RWORK(1= LRWORKMIN
261          RETURN
262       END IF
263 *
264 *     Compute workspace
265 *
266       IF( INFO .EQ. 0 ) THEN
267          IU1CS = 1
268          IU1SN = IU1CS + Q
269          IU2CS = IU1SN + Q
270          IU2SN = IU2CS + Q
271          IV1TCS = IU2SN + Q
272          IV1TSN = IV1TCS + Q
273          IV2TCS = IV1TSN + Q
274          IV2TSN = IV2TCS + Q
275          LRWORKOPT = IV2TSN + Q - 1
276          LRWORKMIN = LRWORKOPT
277          RWORK(1= LRWORKOPT
278          IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
279             INFO = -28
280          END IF
281       END IF
282 *
283       IF( INFO .NE. 0 ) THEN
284          CALL XERBLA( 'ZBBCSD'-INFO )
285          RETURN
286       ELSE IF( LQUERY ) THEN
287          RETURN
288       END IF
289 *
290 *     Get machine constants
291 *
292       EPS = DLAMCH( 'Epsilon' )
293       UNFL = DLAMCH( 'Safe minimum' )
294       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
295       TOL = TOLMUL*EPS
296       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
297 *
298 *     Test for negligible sines or cosines
299 *
300       DO I = 1, Q
301          IF( THETA(I) .LT. THRESH ) THEN
302             THETA(I) = ZERO
303          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
304             THETA(I) = PIOVER2
305          END IF
306       END DO
307       DO I = 1, Q-1
308          IF( PHI(I) .LT. THRESH ) THEN
309             PHI(I) = ZERO
310          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
311             PHI(I) = PIOVER2
312          END IF
313       END DO
314 *
315 *     Initial deflation
316 *
317       IMAX = Q
318       DO WHILE( ( IMAX .GT. 1 ) .AND. ( PHI(IMAX-1.EQ. ZERO ) )
319          IMAX = IMAX - 1
320       END DO
321       IMIN = IMAX - 1
322       IF  ( IMIN .GT. 1 ) THEN
323          DO WHILE( PHI(IMIN-1.NE. ZERO )
324             IMIN = IMIN - 1
325             IF  ( IMIN .LE. 1 ) EXIT
326          END DO
327       END IF
328 *
329 *     Initialize iteration counter
330 *
331       MAXIT = MAXITR*Q*Q
332       ITER = 0
333 *
334 *     Begin main iteration loop
335 *
336       DO WHILE( IMAX .GT. 1 )
337 *
338 *        Compute the matrix entries
339 *
340          B11D(IMIN) = COS( THETA(IMIN) )
341          B21D(IMIN) = -SIN( THETA(IMIN) )
342          DO I = IMIN, IMAX - 1
343             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
344             B11D(I+1= COS( THETA(I+1) ) * COS( PHI(I) )
345             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
346             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
347             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
348             B21D(I+1= -SIN( THETA(I+1) ) * COS( PHI(I) )
349             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
350             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
351          END DO
352          B12D(IMAX) = SIN( THETA(IMAX) )
353          B22D(IMAX) = COS( THETA(IMAX) )
354 *
355 *        Abort if not converging; otherwise, increment ITER
356 *
357          IF( ITER .GT. MAXIT ) THEN
358             INFO = 0
359             DO I = 1, Q
360                IF( PHI(I) .NE. ZERO )
361      $            INFO = INFO + 1
362             END DO
363             RETURN
364          END IF
365 *
366          ITER = ITER + IMAX - IMIN
367 *
368 *        Compute shifts
369 *
370          THETAMAX = THETA(IMIN)
371          THETAMIN = THETA(IMIN)
372          DO I = IMIN+1, IMAX
373             IF( THETA(I) > THETAMAX )
374      $         THETAMAX = THETA(I)
375             IF( THETA(I) < THETAMIN )
376      $         THETAMIN = THETA(I)
377          END DO
378 *
379          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
380 *
381 *           Zero on diagonals of B11 and B22; induce deflation with a
382 *           zero shift
383 *
384             MU = ZERO
385             NU = ONE
386 *
387          ELSE IF( THETAMIN .LT. THRESH ) THEN
388 *
389 *           Zero on diagonals of B12 and B22; induce deflation with a
390 *           zero shift
391 *
392             MU = ONE
393             NU = ZERO
394 *
395          ELSE
396 *
397 *           Compute shifts for B11 and B21 and use the lesser
398 *
399             CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
400      $                  DUMMY )
401             CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
402      $                  DUMMY )
403 *
404             IF( SIGMA11 .LE. SIGMA21 ) THEN
405                MU = SIGMA11
406                NU = SQRT( ONE - MU**2 )
407                IF( MU .LT. THRESH ) THEN
408                   MU = ZERO
409                   NU = ONE
410                END IF
411             ELSE
412                NU = SIGMA21
413                MU = SQRT1.0 - NU**2 )
414                IF( NU .LT. THRESH ) THEN
415                   MU = ONE
416                   NU = ZERO
417                END IF
418             END IF
419          END IF
420 *
421 *        Rotate to produce bulges in B11 and B21
422 *
423          IF( MU .LE. NU ) THEN
424             CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
425      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
426          ELSE
427             CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
428      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
429          END IF
430 *
431          TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
432      $          RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
433          B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
434      $                RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
435          B11D(IMIN) = TEMP
436          B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
437          B11D(IMIN+1= RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
438          TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
439      $          RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
440          B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
441      $                RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
442          B21D(IMIN) = TEMP
443          B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
444          B21D(IMIN+1= RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
445 *
446 *        Compute THETA(IMIN)
447 *
448          THETA( IMIN ) = ATAN2SQRT( B21D(IMIN)**2+B21BULGE**2 ),
449      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
450 *
451 *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
452 *
453          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
454             CALL DLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
455      $                    RWORK(IU1CS+IMIN-1), R )
456          ELSE IF( MU .LE. NU ) THEN
457             CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
458      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
459          ELSE
460             CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
461      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
462          END IF
463          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
464             CALL DLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
465      $                    RWORK(IU2CS+IMIN-1), R )
466          ELSE IF( NU .LT. MU ) THEN
467             CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
468      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
469          ELSE
470             CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
471      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
472          END IF
473          RWORK(IU2CS+IMIN-1= -RWORK(IU2CS+IMIN-1)
474          RWORK(IU2SN+IMIN-1= -RWORK(IU2SN+IMIN-1)
475 *
476          TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
477      $          RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
478          B11D(IMIN+1= RWORK(IU1CS+IMIN-1)*B11D(IMIN+1-
479      $                  RWORK(IU1SN+IMIN-1)*B11E(IMIN)
480          B11E(IMIN) = TEMP
481          IF( IMAX .GT. IMIN+1 ) THEN
482             B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
483             B11E(IMIN+1= RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
484          END IF
485          TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
486      $          RWORK(IU1SN+IMIN-1)*B12E(IMIN)
487          B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
488      $                RWORK(IU1SN+IMIN-1)*B12D(IMIN)
489          B12D(IMIN) = TEMP
490          B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
491          B12D(IMIN+1= RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
492          TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
493      $          RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
494          B21D(IMIN+1= RWORK(IU2CS+IMIN-1)*B21D(IMIN+1-
495      $                  RWORK(IU2SN+IMIN-1)*B21E(IMIN)
496          B21E(IMIN) = TEMP
497          IF( IMAX .GT. IMIN+1 ) THEN
498             B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
499             B21E(IMIN+1= RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
500          END IF
501          TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
502      $          RWORK(IU2SN+IMIN-1)*B22E(IMIN)
503          B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
504      $                RWORK(IU2SN+IMIN-1)*B22D(IMIN)
505          B22D(IMIN) = TEMP
506          B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
507          B22D(IMIN+1= RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
508 *
509 *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
510 *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
511 *        bottom-right
512 *
513          DO I = IMIN+1, IMAX-1
514 *
515 *           Compute PHI(I-1)
516 *
517             X1 = SIN(THETA(I-1))*B11E(I-1+ COS(THETA(I-1))*B21E(I-1)
518             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
519             Y1 = SIN(THETA(I-1))*B12D(I-1+ COS(THETA(I-1))*B22D(I-1)
520             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
521 *
522             PHI(I-1= ATAN2SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
523 *
524 *           Determine if there are bulges to chase or if a new direct
525 *           summand has been reached
526 *
527             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
528             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
529             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
530             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
531 *
532 *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
533 *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
534 *           chasing by applying the original shift again.
535 *
536             IF.NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
537                CALL DLARTGP( X2, X1, RWORK(IV1TSN+I-1),
538      $                       RWORK(IV1TCS+I-1), R )
539             ELSE IF.NOT. RESTART11 .AND. RESTART21 ) THEN
540                CALL DLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
541      $                       RWORK(IV1TCS+I-1), R )
542             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
543                CALL DLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
544      $                       RWORK(IV1TCS+I-1), R )
545             ELSE IF( MU .LE. NU ) THEN
546                CALL DLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
547      $                       RWORK(IV1TSN+I-1) )
548             ELSE
549                CALL DLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
550      $                       RWORK(IV1TSN+I-1) )
551             END IF
552             RWORK(IV1TCS+I-1= -RWORK(IV1TCS+I-1)
553             RWORK(IV1TSN+I-1= -RWORK(IV1TSN+I-1)
554             IF.NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
555                CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
556      $                       RWORK(IV2TCS+I-1-1), R )
557             ELSE IF.NOT. RESTART12 .AND. RESTART22 ) THEN
558                CALL DLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
559      $                       RWORK(IV2TCS+I-1-1), R )
560             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
561                CALL DLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
562      $                       RWORK(IV2TCS+I-1-1), R )
563             ELSE IF( NU .LT. MU ) THEN
564                CALL DLARTGS( B12E(I-1), B12D(I), NU,
565      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
566             ELSE
567                CALL DLARTGS( B22E(I-1), B22D(I), MU,
568      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
569             END IF
570 *
571             TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
572             B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
573      $                RWORK(IV1TSN+I-1)*B11D(I)
574             B11D(I) = TEMP
575             B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
576             B11D(I+1= RWORK(IV1TCS+I-1)*B11D(I+1)
577             TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
578             B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
579      $                RWORK(IV1TSN+I-1)*B21D(I)
580             B21D(I) = TEMP
581             B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
582             B21D(I+1= RWORK(IV1TCS+I-1)*B21D(I+1)
583             TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1+
584      $             RWORK(IV2TSN+I-1-1)*B12D(I)
585             B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
586      $                RWORK(IV2TSN+I-1-1)*B12E(I-1)
587             B12E(I-1= TEMP
588             B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
589             B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
590             TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1+
591      $             RWORK(IV2TSN+I-1-1)*B22D(I)
592             B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
593      $                RWORK(IV2TSN+I-1-1)*B22E(I-1)
594             B22E(I-1= TEMP
595             B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
596             B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
597 *
598 *           Compute THETA(I)
599 *
600             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
601             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
602             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
603             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
604 *
605             THETA(I) = ATAN2SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
606 *
607 *           Determine if there are bulges to chase or if a new direct
608 *           summand has been reached
609 *
610             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
611             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
612             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
613             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
614 *
615 *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
616 *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
617 *           chasing by applying the original shift again.
618 *
619             IF.NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
620                CALL DLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
621      $                       R )
622             ELSE IF.NOT. RESTART11 .AND. RESTART12 ) THEN
623                CALL DLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
624      $                       RWORK(IU1CS+I-1), R )
625             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
626                CALL DLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
627      $                       RWORK(IU1CS+I-1), R )
628             ELSE IF( MU .LE. NU ) THEN
629                CALL DLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
630      $                       RWORK(IU1SN+I-1) )
631             ELSE
632                CALL DLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
633      $                       RWORK(IU1SN+I-1) )
634             END IF
635             IF.NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
636                CALL DLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
637      $                       R )
638             ELSE IF.NOT. RESTART21 .AND. RESTART22 ) THEN
639                CALL DLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
640      $                       RWORK(IU2CS+I-1), R )
641             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
642                CALL DLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
643      $                       RWORK(IU2CS+I-1), R )
644             ELSE IF( NU .LT. MU ) THEN
645                CALL DLARTGS( B21E(I), B21E(I+1), NU, RWORK(IU2CS+I-1),
646      $                       RWORK(IU2SN+I-1) )
647             ELSE
648                CALL DLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
649      $                       RWORK(IU2SN+I-1) )
650             END IF
651             RWORK(IU2CS+I-1= -RWORK(IU2CS+I-1)
652             RWORK(IU2SN+I-1= -RWORK(IU2SN+I-1)
653 *
654             TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
655             B11D(I+1= RWORK(IU1CS+I-1)*B11D(I+1-
656      $                  RWORK(IU1SN+I-1)*B11E(I)
657             B11E(I) = TEMP
658             IF( I .LT. IMAX - 1 ) THEN
659                B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
660                B11E(I+1= RWORK(IU1CS+I-1)*B11E(I+1)
661             END IF
662             TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
663             B21D(I+1= RWORK(IU2CS+I-1)*B21D(I+1-
664      $                  RWORK(IU2SN+I-1)*B21E(I)
665             B21E(I) = TEMP
666             IF( I .LT. IMAX - 1 ) THEN
667                B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
668                B21E(I+1= RWORK(IU2CS+I-1)*B21E(I+1)
669             END IF
670             TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
671             B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
672      $                RWORK(IU1SN+I-1)*B12D(I)
673             B12D(I) = TEMP
674             B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
675             B12D(I+1= RWORK(IU1CS+I-1)*B12D(I+1)
676             TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
677             B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
678      $                RWORK(IU2SN+I-1)*B22D(I)
679             B22D(I) = TEMP
680             B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
681             B22D(I+1= RWORK(IU2CS+I-1)*B22D(I+1)
682 *
683          END DO
684 *
685 *        Compute PHI(IMAX-1)
686 *
687          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1+
688      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
689          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1+
690      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
691          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
692 *
693          PHI(IMAX-1= ATAN2ABS(X1), SQRT(Y1**2+Y2**2) )
694 *
695 *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
696 *
697          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
698          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
699 *
700          IF.NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
701             CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
702      $                    RWORK(IV2TCS+IMAX-1-1), R )
703          ELSE IF.NOT. RESTART12 .AND. RESTART22 ) THEN
704             CALL DLARTGP( B12BULGE, B12D(IMAX-1),
705      $                    RWORK(IV2TSN+IMAX-1-1),
706      $                    RWORK(IV2TCS+IMAX-1-1), R )
707          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
708             CALL DLARTGP( B22BULGE, B22D(IMAX-1),
709      $                    RWORK(IV2TSN+IMAX-1-1),
710      $                    RWORK(IV2TCS+IMAX-1-1), R )
711          ELSE IF( NU .LT. MU ) THEN
712             CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
713      $                    RWORK(IV2TCS+IMAX-1-1),
714      $                    RWORK(IV2TSN+IMAX-1-1) )
715          ELSE
716             CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
717      $                    RWORK(IV2TCS+IMAX-1-1),
718      $                    RWORK(IV2TSN+IMAX-1-1) )
719          END IF
720 *
721          TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1+
722      $          RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
723          B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
724      $                RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
725          B12E(IMAX-1= TEMP
726          TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1+
727      $          RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
728          B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
729      $                RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
730          B22E(IMAX-1= TEMP
731 *
732 *        Update singular vectors
733 *
734          IF( WANTU1 ) THEN
735             IF( COLMAJOR ) THEN
736                CALL ZLASR( 'R''V''F', P, IMAX-IMIN+1,
737      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
738      $                     U1(1,IMIN), LDU1 )
739             ELSE
740                CALL ZLASR( 'L''V''F', IMAX-IMIN+1, P,
741      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
742      $                     U1(IMIN,1), LDU1 )
743             END IF
744          END IF
745          IF( WANTU2 ) THEN
746             IF( COLMAJOR ) THEN
747                CALL ZLASR( 'R''V''F', M-P, IMAX-IMIN+1,
748      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
749      $                     U2(1,IMIN), LDU2 )
750             ELSE
751                CALL ZLASR( 'L''V''F', IMAX-IMIN+1, M-P,
752      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
753      $                     U2(IMIN,1), LDU2 )
754             END IF
755          END IF
756          IF( WANTV1T ) THEN
757             IF( COLMAJOR ) THEN
758                CALL ZLASR( 'L''V''F', IMAX-IMIN+1, Q,
759      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
760      $                     V1T(IMIN,1), LDV1T )
761             ELSE
762                CALL ZLASR( 'R''V''F', Q, IMAX-IMIN+1,
763      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
764      $                     V1T(1,IMIN), LDV1T )
765             END IF
766          END IF
767          IF( WANTV2T ) THEN
768             IF( COLMAJOR ) THEN
769                CALL ZLASR( 'L''V''F', IMAX-IMIN+1, M-Q,
770      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
771      $                     V2T(IMIN,1), LDV2T )
772             ELSE
773                CALL ZLASR( 'R''V''F', M-Q, IMAX-IMIN+1,
774      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
775      $                     V2T(1,IMIN), LDV2T )
776             END IF
777          END IF
778 *
779 *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
780 *
781          IF( B11E(IMAX-1)+B21E(IMAX-1.GT. 0 ) THEN
782             B11D(IMAX) = -B11D(IMAX)
783             B21D(IMAX) = -B21D(IMAX)
784             IF( WANTV1T ) THEN
785                IF( COLMAJOR ) THEN
786                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
787                ELSE
788                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
789                END IF
790             END IF
791          END IF
792 *
793 *        Compute THETA(IMAX)
794 *
795          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
796      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
797          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
798      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
799 *
800          THETA(IMAX) = ATAN2ABS(Y1), ABS(X1) )
801 *
802 *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
803 *        and B22(IMAX,IMAX-1)
804 *
805          IF( B11D(IMAX)+B12E(IMAX-1.LT. 0 ) THEN
806             B12D(IMAX) = -B12D(IMAX)
807             IF( WANTU1 ) THEN
808                IF( COLMAJOR ) THEN
809                   CALL ZSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
810                ELSE
811                   CALL ZSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
812                END IF
813             END IF
814          END IF
815          IF( B21D(IMAX)+B22E(IMAX-1.GT. 0 ) THEN
816             B22D(IMAX) = -B22D(IMAX)
817             IF( WANTU2 ) THEN
818                IF( COLMAJOR ) THEN
819                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
820                ELSE
821                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
822                END IF
823             END IF
824          END IF
825 *
826 *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
827 *
828          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
829             IF( WANTV2T ) THEN
830                IF( COLMAJOR ) THEN
831                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
832                ELSE
833                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
834                END IF
835             END IF
836          END IF
837 *
838 *        Test for negligible sines or cosines
839 *
840          DO I = IMIN, IMAX
841             IF( THETA(I) .LT. THRESH ) THEN
842                THETA(I) = ZERO
843             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
844                THETA(I) = PIOVER2
845             END IF
846          END DO
847          DO I = IMIN, IMAX-1
848             IF( PHI(I) .LT. THRESH ) THEN
849                PHI(I) = ZERO
850             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
851                PHI(I) = PIOVER2
852             END IF
853          END DO
854 *
855 *        Deflate
856 *
857          IF (IMAX .GT. 1THEN
858             DO WHILE( PHI(IMAX-1.EQ. ZERO )
859                IMAX = IMAX - 1
860                IF (IMAX .LE. 1EXIT
861             END DO
862          END IF
863          IF( IMIN .GT. IMAX - 1 )
864      $      IMIN = IMAX - 1
865          IF (IMIN .GT. 1THEN
866             DO WHILE (PHI(IMIN-1.NE. ZERO)
867                 IMIN = IMIN - 1
868                 IF (IMIN .LE. 1EXIT
869             END DO
870          END IF
871 *
872 *        Repeat main iteration loop
873 *
874       END DO
875 *
876 *     Postprocessing: order THETA from least to greatest
877 *
878       DO I = 1, Q
879 *
880          MINI = I
881          THETAMIN = THETA(I)
882          DO J = I+1, Q
883             IF( THETA(J) .LT. THETAMIN ) THEN
884                MINI = J
885                THETAMIN = THETA(J)
886             END IF
887          END DO
888 *
889          IF( MINI .NE. I ) THEN
890             THETA(MINI) = THETA(I)
891             THETA(I) = THETAMIN
892             IF( COLMAJOR ) THEN
893                IF( WANTU1 )
894      $            CALL ZSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
895                IF( WANTU2 )
896      $            CALL ZSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
897                IF( WANTV1T )
898      $            CALL ZSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
899                IF( WANTV2T )
900      $            CALL ZSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
901      $               LDV2T )
902             ELSE
903                IF( WANTU1 )
904      $            CALL ZSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
905                IF( WANTU2 )
906      $            CALL ZSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
907                IF( WANTV1T )
908      $            CALL ZSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
909                IF( WANTV2T )
910      $            CALL ZSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
911             END IF
912          END IF
913 *
914       END DO
915 *
916       RETURN
917 *
918 *     End of ZBBCSD
919 *
920       END
921