1 SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
2 $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
3 *
4 * -- LAPACK routine (version 3.3.1) --
5 * -- LAPACK is a software package provided by Univ. of Tennessee, --
6 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 * -- April 2011 --
8 *
9 * .. Scalar Arguments ..
10 CHARACTER VECT
11 INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
12 * ..
13 * .. Array Arguments ..
14 DOUBLE PRECISION D( * ), E( * ), RWORK( * )
15 COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
16 $ Q( LDQ, * ), WORK( * )
17 * ..
18 *
19 * Purpose
20 * =======
21 *
22 * ZGBBRD reduces a complex general m-by-n band matrix A to real upper
23 * bidiagonal form B by a unitary transformation: Q**H * A * P = B.
24 *
25 * The routine computes B, and optionally forms Q or P**H, or computes
26 * Q**H*C for a given matrix C.
27 *
28 * Arguments
29 * =========
30 *
31 * VECT (input) CHARACTER*1
32 * Specifies whether or not the matrices Q and P**H are to be
33 * formed.
34 * = 'N': do not form Q or P**H;
35 * = 'Q': form Q only;
36 * = 'P': form P**H only;
37 * = 'B': form both.
38 *
39 * M (input) INTEGER
40 * The number of rows of the matrix A. M >= 0.
41 *
42 * N (input) INTEGER
43 * The number of columns of the matrix A. N >= 0.
44 *
45 * NCC (input) INTEGER
46 * The number of columns of the matrix C. NCC >= 0.
47 *
48 * KL (input) INTEGER
49 * The number of subdiagonals of the matrix A. KL >= 0.
50 *
51 * KU (input) INTEGER
52 * The number of superdiagonals of the matrix A. KU >= 0.
53 *
54 * AB (input/output) COMPLEX*16 array, dimension (LDAB,N)
55 * On entry, the m-by-n band matrix A, stored in rows 1 to
56 * KL+KU+1. The j-th column of A is stored in the j-th column of
57 * the array AB as follows:
58 * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
59 * On exit, A is overwritten by values generated during the
60 * reduction.
61 *
62 * LDAB (input) INTEGER
63 * The leading dimension of the array A. LDAB >= KL+KU+1.
64 *
65 * D (output) DOUBLE PRECISION array, dimension (min(M,N))
66 * The diagonal elements of the bidiagonal matrix B.
67 *
68 * E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
69 * The superdiagonal elements of the bidiagonal matrix B.
70 *
71 * Q (output) COMPLEX*16 array, dimension (LDQ,M)
72 * If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
73 * If VECT = 'N' or 'P', the array Q is not referenced.
74 *
75 * LDQ (input) INTEGER
76 * The leading dimension of the array Q.
77 * LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
78 *
79 * PT (output) COMPLEX*16 array, dimension (LDPT,N)
80 * If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
81 * If VECT = 'N' or 'Q', the array PT is not referenced.
82 *
83 * LDPT (input) INTEGER
84 * The leading dimension of the array PT.
85 * LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
86 *
87 * C (input/output) COMPLEX*16 array, dimension (LDC,NCC)
88 * On entry, an m-by-ncc matrix C.
89 * On exit, C is overwritten by Q**H*C.
90 * C is not referenced if NCC = 0.
91 *
92 * LDC (input) INTEGER
93 * The leading dimension of the array C.
94 * LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
95 *
96 * WORK (workspace) COMPLEX*16 array, dimension (max(M,N))
97 *
98 * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
99 *
100 * INFO (output) INTEGER
101 * = 0: successful exit.
102 * < 0: if INFO = -i, the i-th argument had an illegal value.
103 *
104 * =====================================================================
105 *
106 * .. Parameters ..
107 DOUBLE PRECISION ZERO
108 PARAMETER ( ZERO = 0.0D+0 )
109 COMPLEX*16 CZERO, CONE
110 PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
111 $ CONE = ( 1.0D+0, 0.0D+0 ) )
112 * ..
113 * .. Local Scalars ..
114 LOGICAL WANTB, WANTC, WANTPT, WANTQ
115 INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
116 $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
117 DOUBLE PRECISION ABST, RC
118 COMPLEX*16 RA, RB, RS, T
119 * ..
120 * .. External Subroutines ..
121 EXTERNAL XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
122 $ ZSCAL
123 * ..
124 * .. Intrinsic Functions ..
125 INTRINSIC ABS, DCONJG, MAX, MIN
126 * ..
127 * .. External Functions ..
128 LOGICAL LSAME
129 EXTERNAL LSAME
130 * ..
131 * .. Executable Statements ..
132 *
133 * Test the input parameters
134 *
135 WANTB = LSAME( VECT, 'B' )
136 WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
137 WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
138 WANTC = NCC.GT.0
139 KLU1 = KL + KU + 1
140 INFO = 0
141 IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
142 $ THEN
143 INFO = -1
144 ELSE IF( M.LT.0 ) THEN
145 INFO = -2
146 ELSE IF( N.LT.0 ) THEN
147 INFO = -3
148 ELSE IF( NCC.LT.0 ) THEN
149 INFO = -4
150 ELSE IF( KL.LT.0 ) THEN
151 INFO = -5
152 ELSE IF( KU.LT.0 ) THEN
153 INFO = -6
154 ELSE IF( LDAB.LT.KLU1 ) THEN
155 INFO = -8
156 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
157 INFO = -12
158 ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
159 INFO = -14
160 ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
161 INFO = -16
162 END IF
163 IF( INFO.NE.0 ) THEN
164 CALL XERBLA( 'ZGBBRD', -INFO )
165 RETURN
166 END IF
167 *
168 * Initialize Q and P**H to the unit matrix, if needed
169 *
170 IF( WANTQ )
171 $ CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
172 IF( WANTPT )
173 $ CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
174 *
175 * Quick return if possible.
176 *
177 IF( M.EQ.0 .OR. N.EQ.0 )
178 $ RETURN
179 *
180 MINMN = MIN( M, N )
181 *
182 IF( KL+KU.GT.1 ) THEN
183 *
184 * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
185 * first to lower bidiagonal form and then transform to upper
186 * bidiagonal
187 *
188 IF( KU.GT.0 ) THEN
189 ML0 = 1
190 MU0 = 2
191 ELSE
192 ML0 = 2
193 MU0 = 1
194 END IF
195 *
196 * Wherever possible, plane rotations are generated and applied in
197 * vector operations of length NR over the index set J1:J2:KLU1.
198 *
199 * The complex sines of the plane rotations are stored in WORK,
200 * and the real cosines in RWORK.
201 *
202 KLM = MIN( M-1, KL )
203 KUN = MIN( N-1, KU )
204 KB = KLM + KUN
205 KB1 = KB + 1
206 INCA = KB1*LDAB
207 NR = 0
208 J1 = KLM + 2
209 J2 = 1 - KUN
210 *
211 DO 90 I = 1, MINMN
212 *
213 * Reduce i-th column and i-th row of matrix to bidiagonal form
214 *
215 ML = KLM + 1
216 MU = KUN + 1
217 DO 80 KK = 1, KB
218 J1 = J1 + KB
219 J2 = J2 + KB
220 *
221 * generate plane rotations to annihilate nonzero elements
222 * which have been created below the band
223 *
224 IF( NR.GT.0 )
225 $ CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
226 $ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
227 *
228 * apply plane rotations from the left
229 *
230 DO 10 L = 1, KB
231 IF( J2-KLM+L-1.GT.N ) THEN
232 NRT = NR - 1
233 ELSE
234 NRT = NR
235 END IF
236 IF( NRT.GT.0 )
237 $ CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
238 $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
239 $ RWORK( J1 ), WORK( J1 ), KB1 )
240 10 CONTINUE
241 *
242 IF( ML.GT.ML0 ) THEN
243 IF( ML.LE.M-I+1 ) THEN
244 *
245 * generate plane rotation to annihilate a(i+ml-1,i)
246 * within the band, and apply rotation from the left
247 *
248 CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
249 $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
250 AB( KU+ML-1, I ) = RA
251 IF( I.LT.N )
252 $ CALL ZROT( MIN( KU+ML-2, N-I ),
253 $ AB( KU+ML-2, I+1 ), LDAB-1,
254 $ AB( KU+ML-1, I+1 ), LDAB-1,
255 $ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
256 END IF
257 NR = NR + 1
258 J1 = J1 - KB1
259 END IF
260 *
261 IF( WANTQ ) THEN
262 *
263 * accumulate product of plane rotations in Q
264 *
265 DO 20 J = J1, J2, KB1
266 CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
267 $ RWORK( J ), DCONJG( WORK( J ) ) )
268 20 CONTINUE
269 END IF
270 *
271 IF( WANTC ) THEN
272 *
273 * apply plane rotations to C
274 *
275 DO 30 J = J1, J2, KB1
276 CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
277 $ RWORK( J ), WORK( J ) )
278 30 CONTINUE
279 END IF
280 *
281 IF( J2+KUN.GT.N ) THEN
282 *
283 * adjust J2 to keep within the bounds of the matrix
284 *
285 NR = NR - 1
286 J2 = J2 - KB1
287 END IF
288 *
289 DO 40 J = J1, J2, KB1
290 *
291 * create nonzero element a(j-1,j+ku) above the band
292 * and store it in WORK(n+1:2*n)
293 *
294 WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
295 AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
296 40 CONTINUE
297 *
298 * generate plane rotations to annihilate nonzero elements
299 * which have been generated above the band
300 *
301 IF( NR.GT.0 )
302 $ CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
303 $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
304 $ KB1 )
305 *
306 * apply plane rotations from the right
307 *
308 DO 50 L = 1, KB
309 IF( J2+L-1.GT.M ) THEN
310 NRT = NR - 1
311 ELSE
312 NRT = NR
313 END IF
314 IF( NRT.GT.0 )
315 $ CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
316 $ AB( L, J1+KUN ), INCA,
317 $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
318 50 CONTINUE
319 *
320 IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
321 IF( MU.LE.N-I+1 ) THEN
322 *
323 * generate plane rotation to annihilate a(i,i+mu-1)
324 * within the band, and apply rotation from the right
325 *
326 CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
327 $ AB( KU-MU+2, I+MU-1 ),
328 $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
329 AB( KU-MU+3, I+MU-2 ) = RA
330 CALL ZROT( MIN( KL+MU-2, M-I ),
331 $ AB( KU-MU+4, I+MU-2 ), 1,
332 $ AB( KU-MU+3, I+MU-1 ), 1,
333 $ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
334 END IF
335 NR = NR + 1
336 J1 = J1 - KB1
337 END IF
338 *
339 IF( WANTPT ) THEN
340 *
341 * accumulate product of plane rotations in P**H
342 *
343 DO 60 J = J1, J2, KB1
344 CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
345 $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
346 $ DCONJG( WORK( J+KUN ) ) )
347 60 CONTINUE
348 END IF
349 *
350 IF( J2+KB.GT.M ) THEN
351 *
352 * adjust J2 to keep within the bounds of the matrix
353 *
354 NR = NR - 1
355 J2 = J2 - KB1
356 END IF
357 *
358 DO 70 J = J1, J2, KB1
359 *
360 * create nonzero element a(j+kl+ku,j+ku-1) below the
361 * band and store it in WORK(1:n)
362 *
363 WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
364 AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
365 70 CONTINUE
366 *
367 IF( ML.GT.ML0 ) THEN
368 ML = ML - 1
369 ELSE
370 MU = MU - 1
371 END IF
372 80 CONTINUE
373 90 CONTINUE
374 END IF
375 *
376 IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
377 *
378 * A has been reduced to complex lower bidiagonal form
379 *
380 * Transform lower bidiagonal form to upper bidiagonal by applying
381 * plane rotations from the left, overwriting superdiagonal
382 * elements on subdiagonal elements
383 *
384 DO 100 I = 1, MIN( M-1, N )
385 CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
386 AB( 1, I ) = RA
387 IF( I.LT.N ) THEN
388 AB( 2, I ) = RS*AB( 1, I+1 )
389 AB( 1, I+1 ) = RC*AB( 1, I+1 )
390 END IF
391 IF( WANTQ )
392 $ CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
393 $ DCONJG( RS ) )
394 IF( WANTC )
395 $ CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
396 $ RS )
397 100 CONTINUE
398 ELSE
399 *
400 * A has been reduced to complex upper bidiagonal form or is
401 * diagonal
402 *
403 IF( KU.GT.0 .AND. M.LT.N ) THEN
404 *
405 * Annihilate a(m,m+1) by applying plane rotations from the
406 * right
407 *
408 RB = AB( KU, M+1 )
409 DO 110 I = M, 1, -1
410 CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
411 AB( KU+1, I ) = RA
412 IF( I.GT.1 ) THEN
413 RB = -DCONJG( RS )*AB( KU, I )
414 AB( KU, I ) = RC*AB( KU, I )
415 END IF
416 IF( WANTPT )
417 $ CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
418 $ RC, DCONJG( RS ) )
419 110 CONTINUE
420 END IF
421 END IF
422 *
423 * Make diagonal and superdiagonal elements real, storing them in D
424 * and E
425 *
426 T = AB( KU+1, 1 )
427 DO 120 I = 1, MINMN
428 ABST = ABS( T )
429 D( I ) = ABST
430 IF( ABST.NE.ZERO ) THEN
431 T = T / ABST
432 ELSE
433 T = CONE
434 END IF
435 IF( WANTQ )
436 $ CALL ZSCAL( M, T, Q( 1, I ), 1 )
437 IF( WANTC )
438 $ CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
439 IF( I.LT.MINMN ) THEN
440 IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
441 E( I ) = ZERO
442 T = AB( 1, I+1 )
443 ELSE
444 IF( KU.EQ.0 ) THEN
445 T = AB( 2, I )*DCONJG( T )
446 ELSE
447 T = AB( KU, I+1 )*DCONJG( T )
448 END IF
449 ABST = ABS( T )
450 E( I ) = ABST
451 IF( ABST.NE.ZERO ) THEN
452 T = T / ABST
453 ELSE
454 T = CONE
455 END IF
456 IF( WANTPT )
457 $ CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
458 T = AB( KU+1, I+1 )*DCONJG( T )
459 END IF
460 END IF
461 120 CONTINUE
462 RETURN
463 *
464 * End of ZGBBRD
465 *
466 END
2 $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
3 *
4 * -- LAPACK routine (version 3.3.1) --
5 * -- LAPACK is a software package provided by Univ. of Tennessee, --
6 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 * -- April 2011 --
8 *
9 * .. Scalar Arguments ..
10 CHARACTER VECT
11 INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
12 * ..
13 * .. Array Arguments ..
14 DOUBLE PRECISION D( * ), E( * ), RWORK( * )
15 COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
16 $ Q( LDQ, * ), WORK( * )
17 * ..
18 *
19 * Purpose
20 * =======
21 *
22 * ZGBBRD reduces a complex general m-by-n band matrix A to real upper
23 * bidiagonal form B by a unitary transformation: Q**H * A * P = B.
24 *
25 * The routine computes B, and optionally forms Q or P**H, or computes
26 * Q**H*C for a given matrix C.
27 *
28 * Arguments
29 * =========
30 *
31 * VECT (input) CHARACTER*1
32 * Specifies whether or not the matrices Q and P**H are to be
33 * formed.
34 * = 'N': do not form Q or P**H;
35 * = 'Q': form Q only;
36 * = 'P': form P**H only;
37 * = 'B': form both.
38 *
39 * M (input) INTEGER
40 * The number of rows of the matrix A. M >= 0.
41 *
42 * N (input) INTEGER
43 * The number of columns of the matrix A. N >= 0.
44 *
45 * NCC (input) INTEGER
46 * The number of columns of the matrix C. NCC >= 0.
47 *
48 * KL (input) INTEGER
49 * The number of subdiagonals of the matrix A. KL >= 0.
50 *
51 * KU (input) INTEGER
52 * The number of superdiagonals of the matrix A. KU >= 0.
53 *
54 * AB (input/output) COMPLEX*16 array, dimension (LDAB,N)
55 * On entry, the m-by-n band matrix A, stored in rows 1 to
56 * KL+KU+1. The j-th column of A is stored in the j-th column of
57 * the array AB as follows:
58 * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
59 * On exit, A is overwritten by values generated during the
60 * reduction.
61 *
62 * LDAB (input) INTEGER
63 * The leading dimension of the array A. LDAB >= KL+KU+1.
64 *
65 * D (output) DOUBLE PRECISION array, dimension (min(M,N))
66 * The diagonal elements of the bidiagonal matrix B.
67 *
68 * E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
69 * The superdiagonal elements of the bidiagonal matrix B.
70 *
71 * Q (output) COMPLEX*16 array, dimension (LDQ,M)
72 * If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
73 * If VECT = 'N' or 'P', the array Q is not referenced.
74 *
75 * LDQ (input) INTEGER
76 * The leading dimension of the array Q.
77 * LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
78 *
79 * PT (output) COMPLEX*16 array, dimension (LDPT,N)
80 * If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
81 * If VECT = 'N' or 'Q', the array PT is not referenced.
82 *
83 * LDPT (input) INTEGER
84 * The leading dimension of the array PT.
85 * LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
86 *
87 * C (input/output) COMPLEX*16 array, dimension (LDC,NCC)
88 * On entry, an m-by-ncc matrix C.
89 * On exit, C is overwritten by Q**H*C.
90 * C is not referenced if NCC = 0.
91 *
92 * LDC (input) INTEGER
93 * The leading dimension of the array C.
94 * LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
95 *
96 * WORK (workspace) COMPLEX*16 array, dimension (max(M,N))
97 *
98 * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
99 *
100 * INFO (output) INTEGER
101 * = 0: successful exit.
102 * < 0: if INFO = -i, the i-th argument had an illegal value.
103 *
104 * =====================================================================
105 *
106 * .. Parameters ..
107 DOUBLE PRECISION ZERO
108 PARAMETER ( ZERO = 0.0D+0 )
109 COMPLEX*16 CZERO, CONE
110 PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
111 $ CONE = ( 1.0D+0, 0.0D+0 ) )
112 * ..
113 * .. Local Scalars ..
114 LOGICAL WANTB, WANTC, WANTPT, WANTQ
115 INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
116 $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
117 DOUBLE PRECISION ABST, RC
118 COMPLEX*16 RA, RB, RS, T
119 * ..
120 * .. External Subroutines ..
121 EXTERNAL XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
122 $ ZSCAL
123 * ..
124 * .. Intrinsic Functions ..
125 INTRINSIC ABS, DCONJG, MAX, MIN
126 * ..
127 * .. External Functions ..
128 LOGICAL LSAME
129 EXTERNAL LSAME
130 * ..
131 * .. Executable Statements ..
132 *
133 * Test the input parameters
134 *
135 WANTB = LSAME( VECT, 'B' )
136 WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
137 WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
138 WANTC = NCC.GT.0
139 KLU1 = KL + KU + 1
140 INFO = 0
141 IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
142 $ THEN
143 INFO = -1
144 ELSE IF( M.LT.0 ) THEN
145 INFO = -2
146 ELSE IF( N.LT.0 ) THEN
147 INFO = -3
148 ELSE IF( NCC.LT.0 ) THEN
149 INFO = -4
150 ELSE IF( KL.LT.0 ) THEN
151 INFO = -5
152 ELSE IF( KU.LT.0 ) THEN
153 INFO = -6
154 ELSE IF( LDAB.LT.KLU1 ) THEN
155 INFO = -8
156 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
157 INFO = -12
158 ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
159 INFO = -14
160 ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
161 INFO = -16
162 END IF
163 IF( INFO.NE.0 ) THEN
164 CALL XERBLA( 'ZGBBRD', -INFO )
165 RETURN
166 END IF
167 *
168 * Initialize Q and P**H to the unit matrix, if needed
169 *
170 IF( WANTQ )
171 $ CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
172 IF( WANTPT )
173 $ CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
174 *
175 * Quick return if possible.
176 *
177 IF( M.EQ.0 .OR. N.EQ.0 )
178 $ RETURN
179 *
180 MINMN = MIN( M, N )
181 *
182 IF( KL+KU.GT.1 ) THEN
183 *
184 * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
185 * first to lower bidiagonal form and then transform to upper
186 * bidiagonal
187 *
188 IF( KU.GT.0 ) THEN
189 ML0 = 1
190 MU0 = 2
191 ELSE
192 ML0 = 2
193 MU0 = 1
194 END IF
195 *
196 * Wherever possible, plane rotations are generated and applied in
197 * vector operations of length NR over the index set J1:J2:KLU1.
198 *
199 * The complex sines of the plane rotations are stored in WORK,
200 * and the real cosines in RWORK.
201 *
202 KLM = MIN( M-1, KL )
203 KUN = MIN( N-1, KU )
204 KB = KLM + KUN
205 KB1 = KB + 1
206 INCA = KB1*LDAB
207 NR = 0
208 J1 = KLM + 2
209 J2 = 1 - KUN
210 *
211 DO 90 I = 1, MINMN
212 *
213 * Reduce i-th column and i-th row of matrix to bidiagonal form
214 *
215 ML = KLM + 1
216 MU = KUN + 1
217 DO 80 KK = 1, KB
218 J1 = J1 + KB
219 J2 = J2 + KB
220 *
221 * generate plane rotations to annihilate nonzero elements
222 * which have been created below the band
223 *
224 IF( NR.GT.0 )
225 $ CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
226 $ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
227 *
228 * apply plane rotations from the left
229 *
230 DO 10 L = 1, KB
231 IF( J2-KLM+L-1.GT.N ) THEN
232 NRT = NR - 1
233 ELSE
234 NRT = NR
235 END IF
236 IF( NRT.GT.0 )
237 $ CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
238 $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
239 $ RWORK( J1 ), WORK( J1 ), KB1 )
240 10 CONTINUE
241 *
242 IF( ML.GT.ML0 ) THEN
243 IF( ML.LE.M-I+1 ) THEN
244 *
245 * generate plane rotation to annihilate a(i+ml-1,i)
246 * within the band, and apply rotation from the left
247 *
248 CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
249 $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
250 AB( KU+ML-1, I ) = RA
251 IF( I.LT.N )
252 $ CALL ZROT( MIN( KU+ML-2, N-I ),
253 $ AB( KU+ML-2, I+1 ), LDAB-1,
254 $ AB( KU+ML-1, I+1 ), LDAB-1,
255 $ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
256 END IF
257 NR = NR + 1
258 J1 = J1 - KB1
259 END IF
260 *
261 IF( WANTQ ) THEN
262 *
263 * accumulate product of plane rotations in Q
264 *
265 DO 20 J = J1, J2, KB1
266 CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
267 $ RWORK( J ), DCONJG( WORK( J ) ) )
268 20 CONTINUE
269 END IF
270 *
271 IF( WANTC ) THEN
272 *
273 * apply plane rotations to C
274 *
275 DO 30 J = J1, J2, KB1
276 CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
277 $ RWORK( J ), WORK( J ) )
278 30 CONTINUE
279 END IF
280 *
281 IF( J2+KUN.GT.N ) THEN
282 *
283 * adjust J2 to keep within the bounds of the matrix
284 *
285 NR = NR - 1
286 J2 = J2 - KB1
287 END IF
288 *
289 DO 40 J = J1, J2, KB1
290 *
291 * create nonzero element a(j-1,j+ku) above the band
292 * and store it in WORK(n+1:2*n)
293 *
294 WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
295 AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
296 40 CONTINUE
297 *
298 * generate plane rotations to annihilate nonzero elements
299 * which have been generated above the band
300 *
301 IF( NR.GT.0 )
302 $ CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
303 $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
304 $ KB1 )
305 *
306 * apply plane rotations from the right
307 *
308 DO 50 L = 1, KB
309 IF( J2+L-1.GT.M ) THEN
310 NRT = NR - 1
311 ELSE
312 NRT = NR
313 END IF
314 IF( NRT.GT.0 )
315 $ CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
316 $ AB( L, J1+KUN ), INCA,
317 $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
318 50 CONTINUE
319 *
320 IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
321 IF( MU.LE.N-I+1 ) THEN
322 *
323 * generate plane rotation to annihilate a(i,i+mu-1)
324 * within the band, and apply rotation from the right
325 *
326 CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
327 $ AB( KU-MU+2, I+MU-1 ),
328 $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
329 AB( KU-MU+3, I+MU-2 ) = RA
330 CALL ZROT( MIN( KL+MU-2, M-I ),
331 $ AB( KU-MU+4, I+MU-2 ), 1,
332 $ AB( KU-MU+3, I+MU-1 ), 1,
333 $ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
334 END IF
335 NR = NR + 1
336 J1 = J1 - KB1
337 END IF
338 *
339 IF( WANTPT ) THEN
340 *
341 * accumulate product of plane rotations in P**H
342 *
343 DO 60 J = J1, J2, KB1
344 CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
345 $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
346 $ DCONJG( WORK( J+KUN ) ) )
347 60 CONTINUE
348 END IF
349 *
350 IF( J2+KB.GT.M ) THEN
351 *
352 * adjust J2 to keep within the bounds of the matrix
353 *
354 NR = NR - 1
355 J2 = J2 - KB1
356 END IF
357 *
358 DO 70 J = J1, J2, KB1
359 *
360 * create nonzero element a(j+kl+ku,j+ku-1) below the
361 * band and store it in WORK(1:n)
362 *
363 WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
364 AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
365 70 CONTINUE
366 *
367 IF( ML.GT.ML0 ) THEN
368 ML = ML - 1
369 ELSE
370 MU = MU - 1
371 END IF
372 80 CONTINUE
373 90 CONTINUE
374 END IF
375 *
376 IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
377 *
378 * A has been reduced to complex lower bidiagonal form
379 *
380 * Transform lower bidiagonal form to upper bidiagonal by applying
381 * plane rotations from the left, overwriting superdiagonal
382 * elements on subdiagonal elements
383 *
384 DO 100 I = 1, MIN( M-1, N )
385 CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
386 AB( 1, I ) = RA
387 IF( I.LT.N ) THEN
388 AB( 2, I ) = RS*AB( 1, I+1 )
389 AB( 1, I+1 ) = RC*AB( 1, I+1 )
390 END IF
391 IF( WANTQ )
392 $ CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
393 $ DCONJG( RS ) )
394 IF( WANTC )
395 $ CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
396 $ RS )
397 100 CONTINUE
398 ELSE
399 *
400 * A has been reduced to complex upper bidiagonal form or is
401 * diagonal
402 *
403 IF( KU.GT.0 .AND. M.LT.N ) THEN
404 *
405 * Annihilate a(m,m+1) by applying plane rotations from the
406 * right
407 *
408 RB = AB( KU, M+1 )
409 DO 110 I = M, 1, -1
410 CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
411 AB( KU+1, I ) = RA
412 IF( I.GT.1 ) THEN
413 RB = -DCONJG( RS )*AB( KU, I )
414 AB( KU, I ) = RC*AB( KU, I )
415 END IF
416 IF( WANTPT )
417 $ CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
418 $ RC, DCONJG( RS ) )
419 110 CONTINUE
420 END IF
421 END IF
422 *
423 * Make diagonal and superdiagonal elements real, storing them in D
424 * and E
425 *
426 T = AB( KU+1, 1 )
427 DO 120 I = 1, MINMN
428 ABST = ABS( T )
429 D( I ) = ABST
430 IF( ABST.NE.ZERO ) THEN
431 T = T / ABST
432 ELSE
433 T = CONE
434 END IF
435 IF( WANTQ )
436 $ CALL ZSCAL( M, T, Q( 1, I ), 1 )
437 IF( WANTC )
438 $ CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
439 IF( I.LT.MINMN ) THEN
440 IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
441 E( I ) = ZERO
442 T = AB( 1, I+1 )
443 ELSE
444 IF( KU.EQ.0 ) THEN
445 T = AB( 2, I )*DCONJG( T )
446 ELSE
447 T = AB( KU, I+1 )*DCONJG( T )
448 END IF
449 ABST = ABS( T )
450 E( I ) = ABST
451 IF( ABST.NE.ZERO ) THEN
452 T = T / ABST
453 ELSE
454 T = CONE
455 END IF
456 IF( WANTPT )
457 $ CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
458 T = AB( KU+1, I+1 )*DCONJG( T )
459 END IF
460 END IF
461 120 CONTINUE
462 RETURN
463 *
464 * End of ZGBBRD
465 *
466 END