1       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   D( * ), E( * )
 13       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZGEBD2 reduces a complex general m by n matrix A to upper or lower
 20 *  real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
 21 *
 22 *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  M       (input) INTEGER
 28 *          The number of rows in the matrix A.  M >= 0.
 29 *
 30 *  N       (input) INTEGER
 31 *          The number of columns in the matrix A.  N >= 0.
 32 *
 33 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 34 *          On entry, the m by n general matrix to be reduced.
 35 *          On exit,
 36 *          if m >= n, the diagonal and the first superdiagonal are
 37 *            overwritten with the upper bidiagonal matrix B; the
 38 *            elements below the diagonal, with the array TAUQ, represent
 39 *            the unitary matrix Q as a product of elementary
 40 *            reflectors, and the elements above the first superdiagonal,
 41 *            with the array TAUP, represent the unitary matrix P as
 42 *            a product of elementary reflectors;
 43 *          if m < n, the diagonal and the first subdiagonal are
 44 *            overwritten with the lower bidiagonal matrix B; the
 45 *            elements below the first subdiagonal, with the array TAUQ,
 46 *            represent the unitary matrix Q as a product of
 47 *            elementary reflectors, and the elements above the diagonal,
 48 *            with the array TAUP, represent the unitary matrix P as
 49 *            a product of elementary reflectors.
 50 *          See Further Details.
 51 *
 52 *  LDA     (input) INTEGER
 53 *          The leading dimension of the array A.  LDA >= max(1,M).
 54 *
 55 *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
 56 *          The diagonal elements of the bidiagonal matrix B:
 57 *          D(i) = A(i,i).
 58 *
 59 *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
 60 *          The off-diagonal elements of the bidiagonal matrix B:
 61 *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
 62 *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
 63 *
 64 *  TAUQ    (output) COMPLEX*16 array dimension (min(M,N))
 65 *          The scalar factors of the elementary reflectors which
 66 *          represent the unitary matrix Q. See Further Details.
 67 *
 68 *  TAUP    (output) COMPLEX*16 array, dimension (min(M,N))
 69 *          The scalar factors of the elementary reflectors which
 70 *          represent the unitary matrix P. See Further Details.
 71 *
 72 *  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
 73 *
 74 *  INFO    (output) INTEGER
 75 *          = 0: successful exit
 76 *          < 0: if INFO = -i, the i-th argument had an illegal value.
 77 *
 78 *  Further Details
 79 *  ===============
 80 *
 81 *  The matrices Q and P are represented as products of elementary
 82 *  reflectors:
 83 *
 84 *  If m >= n,
 85 *
 86 *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
 87 *
 88 *  Each H(i) and G(i) has the form:
 89 *
 90 *     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
 91 *
 92 *  where tauq and taup are complex scalars, and v and u are complex
 93 *  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
 94 *  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
 95 *  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 96 *
 97 *  If m < n,
 98 *
 99 *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
100 *
101 *  Each H(i) and G(i) has the form:
102 *
103 *     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
104 *
105 *  where tauq and taup are complex scalars, v and u are complex vectors;
106 *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
107 *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
108 *  tauq is stored in TAUQ(i) and taup in TAUP(i).
109 *
110 *  The contents of A on exit are illustrated by the following examples:
111 *
112 *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
113 *
114 *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
115 *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
116 *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
117 *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
118 *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
119 *    (  v1  v2  v3  v4  v5 )
120 *
121 *  where d and e denote diagonal and off-diagonal elements of B, vi
122 *  denotes an element of the vector defining H(i), and ui an element of
123 *  the vector defining G(i).
124 *
125 *  =====================================================================
126 *
127 *     .. Parameters ..
128       COMPLEX*16         ZERO, ONE
129       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ),
130      $                   ONE = ( 1.0D+00.0D+0 ) )
131 *     ..
132 *     .. Local Scalars ..
133       INTEGER            I
134       COMPLEX*16         ALPHA
135 *     ..
136 *     .. External Subroutines ..
137       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
138 *     ..
139 *     .. Intrinsic Functions ..
140       INTRINSIC          DCONJGMAXMIN
141 *     ..
142 *     .. Executable Statements ..
143 *
144 *     Test the input parameters
145 *
146       INFO = 0
147       IF( M.LT.0 ) THEN
148          INFO = -1
149       ELSE IF( N.LT.0 ) THEN
150          INFO = -2
151       ELSE IF( LDA.LT.MAX1, M ) ) THEN
152          INFO = -4
153       END IF
154       IF( INFO.LT.0 ) THEN
155          CALL XERBLA( 'ZGEBD2'-INFO )
156          RETURN
157       END IF
158 *
159       IF( M.GE.N ) THEN
160 *
161 *        Reduce to upper bidiagonal form
162 *
163          DO 10 I = 1, N
164 *
165 *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
166 *
167             ALPHA = A( I, I )
168             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
169      $                   TAUQ( I ) )
170             D( I ) = ALPHA
171             A( I, I ) = ONE
172 *
173 *           Apply H(i)**H to A(i:m,i+1:n) from the left
174 *
175             IF( I.LT.N )
176      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
177      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
178             A( I, I ) = D( I )
179 *
180             IF( I.LT.N ) THEN
181 *
182 *              Generate elementary reflector G(i) to annihilate
183 *              A(i,i+2:n)
184 *
185                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
186                ALPHA = A( I, I+1 )
187                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
188      $                      TAUP( I ) )
189                E( I ) = ALPHA
190                A( I, I+1 ) = ONE
191 *
192 *              Apply G(i) to A(i+1:m,i+1:n) from the right
193 *
194                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
195      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
196                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
197                A( I, I+1 ) = E( I )
198             ELSE
199                TAUP( I ) = ZERO
200             END IF
201    10    CONTINUE
202       ELSE
203 *
204 *        Reduce to lower bidiagonal form
205 *
206          DO 20 I = 1, M
207 *
208 *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
209 *
210             CALL ZLACGV( N-I+1, A( I, I ), LDA )
211             ALPHA = A( I, I )
212             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
213      $                   TAUP( I ) )
214             D( I ) = ALPHA
215             A( I, I ) = ONE
216 *
217 *           Apply G(i) to A(i+1:m,i:n) from the right
218 *
219             IF( I.LT.M )
220      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
221      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
222             CALL ZLACGV( N-I+1, A( I, I ), LDA )
223             A( I, I ) = D( I )
224 *
225             IF( I.LT.M ) THEN
226 *
227 *              Generate elementary reflector H(i) to annihilate
228 *              A(i+2:m,i)
229 *
230                ALPHA = A( I+1, I )
231                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
232      $                      TAUQ( I ) )
233                E( I ) = ALPHA
234                A( I+1, I ) = ONE
235 *
236 *              Apply H(i)**H to A(i+1:m,i+1:n) from the left
237 *
238                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
239      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
240      $                     WORK )
241                A( I+1, I ) = E( I )
242             ELSE
243                TAUQ( I ) = ZERO
244             END IF
245    20    CONTINUE
246       END IF
247       RETURN
248 *
249 *     End of ZGEBD2
250 *
251       END