1       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
  2      $                   LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
  3      $                   RCONDV, WORK, LWORK, RWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 12       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
 13       DOUBLE PRECISION   ABNRM
 14 *     ..
 15 *     .. Array Arguments ..
 16       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
 17      $                   SCALE* )
 18       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 19      $                   W( * ), WORK( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
 26 *  eigenvalues and, optionally, the left and/or right eigenvectors.
 27 *
 28 *  Optionally also, it computes a balancing transformation to improve
 29 *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 30 *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
 31 *  (RCONDE), and reciprocal condition numbers for the right
 32 *  eigenvectors (RCONDV).
 33 *
 34 *  The right eigenvector v(j) of A satisfies
 35 *                   A * v(j) = lambda(j) * v(j)
 36 *  where lambda(j) is its eigenvalue.
 37 *  The left eigenvector u(j) of A satisfies
 38 *                u(j)**H * A = lambda(j) * u(j)**H
 39 *  where u(j)**H denotes the conjugate transpose of u(j).
 40 *
 41 *  The computed eigenvectors are normalized to have Euclidean norm
 42 *  equal to 1 and largest component real.
 43 *
 44 *  Balancing a matrix means permuting the rows and columns to make it
 45 *  more nearly upper triangular, and applying a diagonal similarity
 46 *  transformation D * A * D**(-1), where D is a diagonal matrix, to
 47 *  make its rows and columns closer in norm and the condition numbers
 48 *  of its eigenvalues and eigenvectors smaller.  The computed
 49 *  reciprocal condition numbers correspond to the balanced matrix.
 50 *  Permuting rows and columns will not change the condition numbers
 51 *  (in exact arithmetic) but diagonal scaling will.  For further
 52 *  explanation of balancing, see section 4.10.2 of the LAPACK
 53 *  Users' Guide.
 54 *
 55 *  Arguments
 56 *  =========
 57 *
 58 *  BALANC  (input) CHARACTER*1
 59 *          Indicates how the input matrix should be diagonally scaled
 60 *          and/or permuted to improve the conditioning of its
 61 *          eigenvalues.
 62 *          = 'N': Do not diagonally scale or permute;
 63 *          = 'P': Perform permutations to make the matrix more nearly
 64 *                 upper triangular. Do not diagonally scale;
 65 *          = 'S': Diagonally scale the matrix, ie. replace A by
 66 *                 D*A*D**(-1), where D is a diagonal matrix chosen
 67 *                 to make the rows and columns of A more equal in
 68 *                 norm. Do not permute;
 69 *          = 'B': Both diagonally scale and permute A.
 70 *
 71 *          Computed reciprocal condition numbers will be for the matrix
 72 *          after balancing and/or permuting. Permuting does not change
 73 *          condition numbers (in exact arithmetic), but balancing does.
 74 *
 75 *  JOBVL   (input) CHARACTER*1
 76 *          = 'N': left eigenvectors of A are not computed;
 77 *          = 'V': left eigenvectors of A are computed.
 78 *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
 79 *
 80 *  JOBVR   (input) CHARACTER*1
 81 *          = 'N': right eigenvectors of A are not computed;
 82 *          = 'V': right eigenvectors of A are computed.
 83 *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
 84 *
 85 *  SENSE   (input) CHARACTER*1
 86 *          Determines which reciprocal condition numbers are computed.
 87 *          = 'N': None are computed;
 88 *          = 'E': Computed for eigenvalues only;
 89 *          = 'V': Computed for right eigenvectors only;
 90 *          = 'B': Computed for eigenvalues and right eigenvectors.
 91 *
 92 *          If SENSE = 'E' or 'B', both left and right eigenvectors
 93 *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
 94 *
 95 *  N       (input) INTEGER
 96 *          The order of the matrix A. N >= 0.
 97 *
 98 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 99 *          On entry, the N-by-N matrix A.
100 *          On exit, A has been overwritten.  If JOBVL = 'V' or
101 *          JOBVR = 'V', A contains the Schur form of the balanced
102 *          version of the matrix A.
103 *
104 *  LDA     (input) INTEGER
105 *          The leading dimension of the array A.  LDA >= max(1,N).
106 *
107 *  W       (output) COMPLEX*16 array, dimension (N)
108 *          W contains the computed eigenvalues.
109 *
110 *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
111 *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
112 *          after another in the columns of VL, in the same order
113 *          as their eigenvalues.
114 *          If JOBVL = 'N', VL is not referenced.
115 *          u(j) = VL(:,j), the j-th column of VL.
116 *
117 *  LDVL    (input) INTEGER
118 *          The leading dimension of the array VL.  LDVL >= 1; if
119 *          JOBVL = 'V', LDVL >= N.
120 *
121 *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
122 *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
123 *          after another in the columns of VR, in the same order
124 *          as their eigenvalues.
125 *          If JOBVR = 'N', VR is not referenced.
126 *          v(j) = VR(:,j), the j-th column of VR.
127 *
128 *  LDVR    (input) INTEGER
129 *          The leading dimension of the array VR.  LDVR >= 1; if
130 *          JOBVR = 'V', LDVR >= N.
131 *
132 *  ILO     (output) INTEGER
133 *  IHI     (output) INTEGER
134 *          ILO and IHI are integer values determined when A was
135 *          balanced.  The balanced A(i,j) = 0 if I > J and
136 *          J = 1,...,ILO-1 or I = IHI+1,...,N.
137 *
138 *  SCALE   (output) DOUBLE PRECISION array, dimension (N)
139 *          Details of the permutations and scaling factors applied
140 *          when balancing A.  If P(j) is the index of the row and column
141 *          interchanged with row and column j, and D(j) is the scaling
142 *          factor applied to row and column j, then
143 *          SCALE(J) = P(J),    for J = 1,...,ILO-1
144 *                   = D(J),    for J = ILO,...,IHI
145 *                   = P(J)     for J = IHI+1,...,N.
146 *          The order in which the interchanges are made is N to IHI+1,
147 *          then 1 to ILO-1.
148 *
149 *  ABNRM   (output) DOUBLE PRECISION
150 *          The one-norm of the balanced matrix (the maximum
151 *          of the sum of absolute values of elements of any column).
152 *
153 *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
154 *          RCONDE(j) is the reciprocal condition number of the j-th
155 *          eigenvalue.
156 *
157 *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
158 *          RCONDV(j) is the reciprocal condition number of the j-th
159 *          right eigenvector.
160 *
161 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
162 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
163 *
164 *  LWORK   (input) INTEGER
165 *          The dimension of the array WORK.  If SENSE = 'N' or 'E',
166 *          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
167 *          LWORK >= N*N+2*N.
168 *          For good performance, LWORK must generally be larger.
169 *
170 *          If LWORK = -1, then a workspace query is assumed; the routine
171 *          only calculates the optimal size of the WORK array, returns
172 *          this value as the first entry of the WORK array, and no error
173 *          message related to LWORK is issued by XERBLA.
174 *
175 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
176 *
177 *  INFO    (output) INTEGER
178 *          = 0:  successful exit
179 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
180 *          > 0:  if INFO = i, the QR algorithm failed to compute all the
181 *                eigenvalues, and no eigenvectors or condition numbers
182 *                have been computed; elements 1:ILO-1 and i+1:N of W
183 *                contain eigenvalues which have converged.
184 *
185 *  =====================================================================
186 *
187 *     .. Parameters ..
188       DOUBLE PRECISION   ZERO, ONE
189       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
190 *     ..
191 *     .. Local Scalars ..
192       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
193      $                   WNTSNN, WNTSNV
194       CHARACTER          JOB, SIDE
195       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
196      $                   MINWRK, NOUT
197       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
198       COMPLEX*16         TMP
199 *     ..
200 *     .. Local Arrays ..
201       LOGICAL            SELECT1 )
202       DOUBLE PRECISION   DUM( 1 )
203 *     ..
204 *     .. External Subroutines ..
205       EXTERNAL           DLABAD, DLASCL, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL,
206      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC,
207      $                   ZTRSNA, ZUNGHR
208 *     ..
209 *     .. External Functions ..
210       LOGICAL            LSAME
211       INTEGER            IDAMAX, ILAENV
212       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
213       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
214 *     ..
215 *     .. Intrinsic Functions ..
216       INTRINSIC          DBLEDCMPLXDCONJGDIMAGMAXSQRT
217 *     ..
218 *     .. Executable Statements ..
219 *
220 *     Test the input arguments
221 *
222       INFO = 0
223       LQUERY = ( LWORK.EQ.-1 )
224       WANTVL = LSAME( JOBVL, 'V' )
225       WANTVR = LSAME( JOBVR, 'V' )
226       WNTSNN = LSAME( SENSE, 'N' )
227       WNTSNE = LSAME( SENSE, 'E' )
228       WNTSNV = LSAME( SENSE, 'V' )
229       WNTSNB = LSAME( SENSE, 'B' )
230       IF.NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
231      $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
232          INFO = -1
233       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
234          INFO = -2
235       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
236          INFO = -3
237       ELSE IF.NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
238      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
239      $         WANTVR ) ) ) THEN
240          INFO = -4
241       ELSE IF( N.LT.0 ) THEN
242          INFO = -5
243       ELSE IF( LDA.LT.MAX1, N ) ) THEN
244          INFO = -7
245       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
246          INFO = -10
247       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
248          INFO = -12
249       END IF
250 *
251 *     Compute workspace
252 *      (Note: Comments in the code beginning "Workspace:" describe the
253 *       minimal amount of workspace needed at that point in the code,
254 *       as well as the preferred amount for good performance.
255 *       CWorkspace refers to complex workspace, and RWorkspace to real
256 *       workspace. NB refers to the optimal block size for the
257 *       immediately following subroutine, as returned by ILAENV.
258 *       HSWORK refers to the workspace preferred by ZHSEQR, as
259 *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
260 *       the worst case.)
261 *
262       IF( INFO.EQ.0 ) THEN
263          IF( N.EQ.0 ) THEN
264             MINWRK = 1
265             MAXWRK = 1
266          ELSE
267             MAXWRK = N + N*ILAENV( 1'ZGEHRD'' ', N, 1, N, 0 )
268 *
269             IF( WANTVL ) THEN
270                CALL ZHSEQR( 'S''V', N, 1, N, A, LDA, W, VL, LDVL,
271      $                WORK, -1, INFO )
272             ELSE IF( WANTVR ) THEN
273                CALL ZHSEQR( 'S''V', N, 1, N, A, LDA, W, VR, LDVR,
274      $                WORK, -1, INFO )
275             ELSE
276                IF( WNTSNN ) THEN
277                   CALL ZHSEQR( 'E''N', N, 1, N, A, LDA, W, VR, LDVR,
278      $                WORK, -1, INFO )
279                ELSE
280                   CALL ZHSEQR( 'S''N', N, 1, N, A, LDA, W, VR, LDVR,
281      $                WORK, -1, INFO )
282                END IF
283             END IF
284             HSWORK = WORK( 1 )
285 *
286             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
287                MINWRK = 2*N
288                IF.NOT.( WNTSNN .OR. WNTSNE ) )
289      $            MINWRK = MAX( MINWRK, N*+ 2*N )
290                MAXWRK = MAX( MAXWRK, HSWORK )
291                IF.NOT.( WNTSNN .OR. WNTSNE ) )
292      $            MAXWRK = MAX( MAXWRK, N*+ 2*N )
293             ELSE
294                MINWRK = 2*N
295                IF.NOT.( WNTSNN .OR. WNTSNE ) )
296      $            MINWRK = MAX( MINWRK, N*+ 2*N )
297                MAXWRK = MAX( MAXWRK, HSWORK )
298                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1'ZUNGHR',
299      $                       ' ', N, 1, N, -1 ) )
300                IF.NOT.( WNTSNN .OR. WNTSNE ) )
301      $            MAXWRK = MAX( MAXWRK, N*+ 2*N )
302                MAXWRK = MAX( MAXWRK, 2*N )
303             END IF
304             MAXWRK = MAX( MAXWRK, MINWRK )
305          END IF
306          WORK( 1 ) = MAXWRK
307 *
308          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
309             INFO = -20
310          END IF
311       END IF
312 *
313       IF( INFO.NE.0 ) THEN
314          CALL XERBLA( 'ZGEEVX'-INFO )
315          RETURN
316       ELSE IF( LQUERY ) THEN
317          RETURN
318       END IF
319 *
320 *     Quick return if possible
321 *
322       IF( N.EQ.0 )
323      $   RETURN
324 *
325 *     Get machine constants
326 *
327       EPS = DLAMCH( 'P' )
328       SMLNUM = DLAMCH( 'S' )
329       BIGNUM = ONE / SMLNUM
330       CALL DLABAD( SMLNUM, BIGNUM )
331       SMLNUM = SQRT( SMLNUM ) / EPS
332       BIGNUM = ONE / SMLNUM
333 *
334 *     Scale A if max element outside range [SMLNUM,BIGNUM]
335 *
336       ICOND = 0
337       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
338       SCALEA = .FALSE.
339       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
340          SCALEA = .TRUE.
341          CSCALE = SMLNUM
342       ELSE IF( ANRM.GT.BIGNUM ) THEN
343          SCALEA = .TRUE.
344          CSCALE = BIGNUM
345       END IF
346       IF( SCALEA )
347      $   CALL ZLASCL( 'G'00, ANRM, CSCALE, N, N, A, LDA, IERR )
348 *
349 *     Balance the matrix and compute ABNRM
350 *
351       CALL ZGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
352       ABNRM = ZLANGE( '1', N, N, A, LDA, DUM )
353       IF( SCALEA ) THEN
354          DUM( 1 ) = ABNRM
355          CALL DLASCL( 'G'00, CSCALE, ANRM, 11, DUM, 1, IERR )
356          ABNRM = DUM( 1 )
357       END IF
358 *
359 *     Reduce to upper Hessenberg form
360 *     (CWorkspace: need 2*N, prefer N+N*NB)
361 *     (RWorkspace: none)
362 *
363       ITAU = 1
364       IWRK = ITAU + N
365       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
366      $             LWORK-IWRK+1, IERR )
367 *
368       IF( WANTVL ) THEN
369 *
370 *        Want left eigenvectors
371 *        Copy Householder vectors to VL
372 *
373          SIDE = 'L'
374          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
375 *
376 *        Generate unitary matrix in VL
377 *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
378 *        (RWorkspace: none)
379 *
380          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
381      $                LWORK-IWRK+1, IERR )
382 *
383 *        Perform QR iteration, accumulating Schur vectors in VL
384 *        (CWorkspace: need 1, prefer HSWORK (see comments) )
385 *        (RWorkspace: none)
386 *
387          IWRK = ITAU
388          CALL ZHSEQR( 'S''V', N, ILO, IHI, A, LDA, W, VL, LDVL,
389      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
390 *
391          IF( WANTVR ) THEN
392 *
393 *           Want left and right eigenvectors
394 *           Copy Schur vectors to VR
395 *
396             SIDE = 'B'
397             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
398          END IF
399 *
400       ELSE IF( WANTVR ) THEN
401 *
402 *        Want right eigenvectors
403 *        Copy Householder vectors to VR
404 *
405          SIDE = 'R'
406          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
407 *
408 *        Generate unitary matrix in VR
409 *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
410 *        (RWorkspace: none)
411 *
412          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
413      $                LWORK-IWRK+1, IERR )
414 *
415 *        Perform QR iteration, accumulating Schur vectors in VR
416 *        (CWorkspace: need 1, prefer HSWORK (see comments) )
417 *        (RWorkspace: none)
418 *
419          IWRK = ITAU
420          CALL ZHSEQR( 'S''V', N, ILO, IHI, A, LDA, W, VR, LDVR,
421      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
422 *
423       ELSE
424 *
425 *        Compute eigenvalues only
426 *        If condition numbers desired, compute Schur form
427 *
428          IF( WNTSNN ) THEN
429             JOB = 'E'
430          ELSE
431             JOB = 'S'
432          END IF
433 *
434 *        (CWorkspace: need 1, prefer HSWORK (see comments) )
435 *        (RWorkspace: none)
436 *
437          IWRK = ITAU
438          CALL ZHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
439      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
440       END IF
441 *
442 *     If INFO > 0 from ZHSEQR, then quit
443 *
444       IF( INFO.GT.0 )
445      $   GO TO 50
446 *
447       IF( WANTVL .OR. WANTVR ) THEN
448 *
449 *        Compute left and/or right eigenvectors
450 *        (CWorkspace: need 2*N)
451 *        (RWorkspace: need N)
452 *
453          CALL ZTREVC( SIDE, 'B'SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
454      $                N, NOUT, WORK( IWRK ), RWORK, IERR )
455       END IF
456 *
457 *     Compute condition numbers if desired
458 *     (CWorkspace: need N*N+2*N unless SENSE = 'E')
459 *     (RWorkspace: need 2*N unless SENSE = 'E')
460 *
461       IF.NOT.WNTSNN ) THEN
462          CALL ZTRSNA( SENSE, 'A'SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
463      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
464      $                ICOND )
465       END IF
466 *
467       IF( WANTVL ) THEN
468 *
469 *        Undo balancing of left eigenvectors
470 *
471          CALL ZGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
472      $                IERR )
473 *
474 *        Normalize left eigenvectors and make largest component real
475 *
476          DO 20 I = 1, N
477             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
478             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
479             DO 10 K = 1, N
480                RWORK( K ) = DBLE( VL( K, I ) )**2 +
481      $                      DIMAG( VL( K, I ) )**2
482    10       CONTINUE
483             K = IDAMAX( N, RWORK, 1 )
484             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
485             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
486             VL( K, I ) = DCMPLXDBLE( VL( K, I ) ), ZERO )
487    20    CONTINUE
488       END IF
489 *
490       IF( WANTVR ) THEN
491 *
492 *        Undo balancing of right eigenvectors
493 *
494          CALL ZGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
495      $                IERR )
496 *
497 *        Normalize right eigenvectors and make largest component real
498 *
499          DO 40 I = 1, N
500             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
501             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
502             DO 30 K = 1, N
503                RWORK( K ) = DBLE( VR( K, I ) )**2 +
504      $                      DIMAG( VR( K, I ) )**2
505    30       CONTINUE
506             K = IDAMAX( N, RWORK, 1 )
507             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
508             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
509             VR( K, I ) = DCMPLXDBLE( VR( K, I ) ), ZERO )
510    40    CONTINUE
511       END IF
512 *
513 *     Undo scaling if necessary
514 *
515    50 CONTINUE
516       IF( SCALEA ) THEN
517          CALL ZLASCL( 'G'00, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
518      $                MAX( N-INFO, 1 ), IERR )
519          IF( INFO.EQ.0 ) THEN
520             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
521      $         CALL DLASCL( 'G'00, CSCALE, ANRM, N, 1, RCONDV, N,
522      $                      IERR )
523          ELSE
524             CALL ZLASCL( 'G'00, CSCALE, ANRM, ILO-11, W, N, IERR )
525          END IF
526       END IF
527 *
528       WORK( 1 ) = MAXWRK
529       RETURN
530 *
531 *     End of ZGEEVX
532 *
533       END