1       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            IHI, ILO, INFO, LDA, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
 19 *  by a unitary similarity transformation:  Q**H * A * Q = H .
 20 *
 21 *  Arguments
 22 *  =========
 23 *
 24 *  N       (input) INTEGER
 25 *          The order of the matrix A.  N >= 0.
 26 *
 27 *  ILO     (input) INTEGER
 28 *  IHI     (input) INTEGER
 29 *          It is assumed that A is already upper triangular in rows
 30 *          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
 31 *          set by a previous call to ZGEBAL; otherwise they should be
 32 *          set to 1 and N respectively. See Further Details.
 33 *          1 <= ILO <= IHI <= max(1,N).
 34 *
 35 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 36 *          On entry, the n by n general matrix to be reduced.
 37 *          On exit, the upper triangle and the first subdiagonal of A
 38 *          are overwritten with the upper Hessenberg matrix H, and the
 39 *          elements below the first subdiagonal, with the array TAU,
 40 *          represent the unitary matrix Q as a product of elementary
 41 *          reflectors. See Further Details.
 42 *
 43 *  LDA     (input) INTEGER
 44 *          The leading dimension of the array A.  LDA >= max(1,N).
 45 *
 46 *  TAU     (output) COMPLEX*16 array, dimension (N-1)
 47 *          The scalar factors of the elementary reflectors (see Further
 48 *          Details).
 49 *
 50 *  WORK    (workspace) COMPLEX*16 array, dimension (N)
 51 *
 52 *  INFO    (output) INTEGER
 53 *          = 0:  successful exit
 54 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 55 *
 56 *  Further Details
 57 *  ===============
 58 *
 59 *  The matrix Q is represented as a product of (ihi-ilo) elementary
 60 *  reflectors
 61 *
 62 *     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
 63 *
 64 *  Each H(i) has the form
 65 *
 66 *     H(i) = I - tau * v * v**H
 67 *
 68 *  where tau is a complex scalar, and v is a complex vector with
 69 *  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
 70 *  exit in A(i+2:ihi,i), and tau in TAU(i).
 71 *
 72 *  The contents of A are illustrated by the following example, with
 73 *  n = 7, ilo = 2 and ihi = 6:
 74 *
 75 *  on entry,                        on exit,
 76 *
 77 *  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
 78 *  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
 79 *  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
 80 *  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
 81 *  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
 82 *  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
 83 *  (                         a )    (                          a )
 84 *
 85 *  where a denotes an element of the original matrix A, h denotes a
 86 *  modified element of the upper Hessenberg matrix H, and vi denotes an
 87 *  element of the vector defining H(i).
 88 *
 89 *  =====================================================================
 90 *
 91 *     .. Parameters ..
 92       COMPLEX*16         ONE
 93       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
 94 *     ..
 95 *     .. Local Scalars ..
 96       INTEGER            I
 97       COMPLEX*16         ALPHA
 98 *     ..
 99 *     .. External Subroutines ..
100       EXTERNAL           XERBLA, ZLARF, ZLARFG
101 *     ..
102 *     .. Intrinsic Functions ..
103       INTRINSIC          DCONJGMAXMIN
104 *     ..
105 *     .. Executable Statements ..
106 *
107 *     Test the input parameters
108 *
109       INFO = 0
110       IF( N.LT.0 ) THEN
111          INFO = -1
112       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX1, N ) ) THEN
113          INFO = -2
114       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
115          INFO = -3
116       ELSE IF( LDA.LT.MAX1, N ) ) THEN
117          INFO = -5
118       END IF
119       IF( INFO.NE.0 ) THEN
120          CALL XERBLA( 'ZGEHD2'-INFO )
121          RETURN
122       END IF
123 *
124       DO 10 I = ILO, IHI - 1
125 *
126 *        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
127 *
128          ALPHA = A( I+1, I )
129          CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
130          A( I+1, I ) = ONE
131 *
132 *        Apply H(i) to A(1:ihi,i+1:ihi) from the right
133 *
134          CALL ZLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
135      $               A( 1, I+1 ), LDA, WORK )
136 *
137 *        Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
138 *
139          CALL ZLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
140      $               DCONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
141 *
142          A( I+1, I ) = ALPHA
143    10 CONTINUE
144 *
145       RETURN
146 *
147 *     End of ZGEHD2
148 *
149       END