1 SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 * -- LAPACK is a software package provided by Univ. of Tennessee, --
5 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 * -- April 2009 --
7 *
8 * .. Scalar Arguments ..
9 INTEGER IHI, ILO, INFO, LDA, LWORK, N
10 * ..
11 * .. Array Arguments ..
12 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
13 * ..
14 *
15 * Purpose
16 * =======
17 *
18 * ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
19 * an unitary similarity transformation: Q**H * A * Q = H .
20 *
21 * Arguments
22 * =========
23 *
24 * N (input) INTEGER
25 * The order of the matrix A. N >= 0.
26 *
27 * ILO (input) INTEGER
28 * IHI (input) INTEGER
29 * It is assumed that A is already upper triangular in rows
30 * and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
31 * set by a previous call to ZGEBAL; otherwise they should be
32 * set to 1 and N respectively. See Further Details.
33 * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
34 *
35 * A (input/output) COMPLEX*16 array, dimension (LDA,N)
36 * On entry, the N-by-N general matrix to be reduced.
37 * On exit, the upper triangle and the first subdiagonal of A
38 * are overwritten with the upper Hessenberg matrix H, and the
39 * elements below the first subdiagonal, with the array TAU,
40 * represent the unitary matrix Q as a product of elementary
41 * reflectors. See Further Details.
42 *
43 * LDA (input) INTEGER
44 * The leading dimension of the array A. LDA >= max(1,N).
45 *
46 * TAU (output) COMPLEX*16 array, dimension (N-1)
47 * The scalar factors of the elementary reflectors (see Further
48 * Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
49 * zero.
50 *
51 * WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
52 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
53 *
54 * LWORK (input) INTEGER
55 * The length of the array WORK. LWORK >= max(1,N).
56 * For optimum performance LWORK >= N*NB, where NB is the
57 * optimal blocksize.
58 *
59 * If LWORK = -1, then a workspace query is assumed; the routine
60 * only calculates the optimal size of the WORK array, returns
61 * this value as the first entry of the WORK array, and no error
62 * message related to LWORK is issued by XERBLA.
63 *
64 * INFO (output) INTEGER
65 * = 0: successful exit
66 * < 0: if INFO = -i, the i-th argument had an illegal value.
67 *
68 * Further Details
69 * ===============
70 *
71 * The matrix Q is represented as a product of (ihi-ilo) elementary
72 * reflectors
73 *
74 * Q = H(ilo) H(ilo+1) . . . H(ihi-1).
75 *
76 * Each H(i) has the form
77 *
78 * H(i) = I - tau * v * v**H
79 *
80 * where tau is a complex scalar, and v is a complex vector with
81 * v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
82 * exit in A(i+2:ihi,i), and tau in TAU(i).
83 *
84 * The contents of A are illustrated by the following example, with
85 * n = 7, ilo = 2 and ihi = 6:
86 *
87 * on entry, on exit,
88 *
89 * ( a a a a a a a ) ( a a h h h h a )
90 * ( a a a a a a ) ( a h h h h a )
91 * ( a a a a a a ) ( h h h h h h )
92 * ( a a a a a a ) ( v2 h h h h h )
93 * ( a a a a a a ) ( v2 v3 h h h h )
94 * ( a a a a a a ) ( v2 v3 v4 h h h )
95 * ( a ) ( a )
96 *
97 * where a denotes an element of the original matrix A, h denotes a
98 * modified element of the upper Hessenberg matrix H, and vi denotes an
99 * element of the vector defining H(i).
100 *
101 * This file is a slight modification of LAPACK-3.0's DGEHRD
102 * subroutine incorporating improvements proposed by Quintana-Orti and
103 * Van de Geijn (2006). (See DLAHR2.)
104 *
105 * =====================================================================
106 *
107 * .. Parameters ..
108 INTEGER NBMAX, LDT
109 PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
110 COMPLEX*16 ZERO, ONE
111 PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
112 $ ONE = ( 1.0D+0, 0.0D+0 ) )
113 * ..
114 * .. Local Scalars ..
115 LOGICAL LQUERY
116 INTEGER I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
117 $ NBMIN, NH, NX
118 COMPLEX*16 EI
119 * ..
120 * .. Local Arrays ..
121 COMPLEX*16 T( LDT, NBMAX )
122 * ..
123 * .. External Subroutines ..
124 EXTERNAL ZAXPY, ZGEHD2, ZGEMM, ZLAHR2, ZLARFB, ZTRMM,
125 $ XERBLA
126 * ..
127 * .. Intrinsic Functions ..
128 INTRINSIC MAX, MIN
129 * ..
130 * .. External Functions ..
131 INTEGER ILAENV
132 EXTERNAL ILAENV
133 * ..
134 * .. Executable Statements ..
135 *
136 * Test the input parameters
137 *
138 INFO = 0
139 NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
140 LWKOPT = N*NB
141 WORK( 1 ) = LWKOPT
142 LQUERY = ( LWORK.EQ.-1 )
143 IF( N.LT.0 ) THEN
144 INFO = -1
145 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
146 INFO = -2
147 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
148 INFO = -3
149 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
150 INFO = -5
151 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
152 INFO = -8
153 END IF
154 IF( INFO.NE.0 ) THEN
155 CALL XERBLA( 'ZGEHRD', -INFO )
156 RETURN
157 ELSE IF( LQUERY ) THEN
158 RETURN
159 END IF
160 *
161 * Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
162 *
163 DO 10 I = 1, ILO - 1
164 TAU( I ) = ZERO
165 10 CONTINUE
166 DO 20 I = MAX( 1, IHI ), N - 1
167 TAU( I ) = ZERO
168 20 CONTINUE
169 *
170 * Quick return if possible
171 *
172 NH = IHI - ILO + 1
173 IF( NH.LE.1 ) THEN
174 WORK( 1 ) = 1
175 RETURN
176 END IF
177 *
178 * Determine the block size
179 *
180 NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
181 NBMIN = 2
182 IWS = 1
183 IF( NB.GT.1 .AND. NB.LT.NH ) THEN
184 *
185 * Determine when to cross over from blocked to unblocked code
186 * (last block is always handled by unblocked code)
187 *
188 NX = MAX( NB, ILAENV( 3, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
189 IF( NX.LT.NH ) THEN
190 *
191 * Determine if workspace is large enough for blocked code
192 *
193 IWS = N*NB
194 IF( LWORK.LT.IWS ) THEN
195 *
196 * Not enough workspace to use optimal NB: determine the
197 * minimum value of NB, and reduce NB or force use of
198 * unblocked code
199 *
200 NBMIN = MAX( 2, ILAENV( 2, 'ZGEHRD', ' ', N, ILO, IHI,
201 $ -1 ) )
202 IF( LWORK.GE.N*NBMIN ) THEN
203 NB = LWORK / N
204 ELSE
205 NB = 1
206 END IF
207 END IF
208 END IF
209 END IF
210 LDWORK = N
211 *
212 IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
213 *
214 * Use unblocked code below
215 *
216 I = ILO
217 *
218 ELSE
219 *
220 * Use blocked code
221 *
222 DO 40 I = ILO, IHI - 1 - NX, NB
223 IB = MIN( NB, IHI-I )
224 *
225 * Reduce columns i:i+ib-1 to Hessenberg form, returning the
226 * matrices V and T of the block reflector H = I - V*T*V**H
227 * which performs the reduction, and also the matrix Y = A*V*T
228 *
229 CALL ZLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
230 $ WORK, LDWORK )
231 *
232 * Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
233 * right, computing A := A - Y * V**H. V(i+ib,ib-1) must be set
234 * to 1
235 *
236 EI = A( I+IB, I+IB-1 )
237 A( I+IB, I+IB-1 ) = ONE
238 CALL ZGEMM( 'No transpose', 'Conjugate transpose',
239 $ IHI, IHI-I-IB+1,
240 $ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
241 $ A( 1, I+IB ), LDA )
242 A( I+IB, I+IB-1 ) = EI
243 *
244 * Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
245 * right
246 *
247 CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
248 $ 'Unit', I, IB-1,
249 $ ONE, A( I+1, I ), LDA, WORK, LDWORK )
250 DO 30 J = 0, IB-2
251 CALL ZAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
252 $ A( 1, I+J+1 ), 1 )
253 30 CONTINUE
254 *
255 * Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
256 * left
257 *
258 CALL ZLARFB( 'Left', 'Conjugate transpose', 'Forward',
259 $ 'Columnwise',
260 $ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
261 $ A( I+1, I+IB ), LDA, WORK, LDWORK )
262 40 CONTINUE
263 END IF
264 *
265 * Use unblocked code to reduce the rest of the matrix
266 *
267 CALL ZGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
268 WORK( 1 ) = IWS
269 *
270 RETURN
271 *
272 * End of ZGEHRD
273 *
274 END
2 *
3 * -- LAPACK routine (version 3.3.1) --
4 * -- LAPACK is a software package provided by Univ. of Tennessee, --
5 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 * -- April 2009 --
7 *
8 * .. Scalar Arguments ..
9 INTEGER IHI, ILO, INFO, LDA, LWORK, N
10 * ..
11 * .. Array Arguments ..
12 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
13 * ..
14 *
15 * Purpose
16 * =======
17 *
18 * ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
19 * an unitary similarity transformation: Q**H * A * Q = H .
20 *
21 * Arguments
22 * =========
23 *
24 * N (input) INTEGER
25 * The order of the matrix A. N >= 0.
26 *
27 * ILO (input) INTEGER
28 * IHI (input) INTEGER
29 * It is assumed that A is already upper triangular in rows
30 * and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
31 * set by a previous call to ZGEBAL; otherwise they should be
32 * set to 1 and N respectively. See Further Details.
33 * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
34 *
35 * A (input/output) COMPLEX*16 array, dimension (LDA,N)
36 * On entry, the N-by-N general matrix to be reduced.
37 * On exit, the upper triangle and the first subdiagonal of A
38 * are overwritten with the upper Hessenberg matrix H, and the
39 * elements below the first subdiagonal, with the array TAU,
40 * represent the unitary matrix Q as a product of elementary
41 * reflectors. See Further Details.
42 *
43 * LDA (input) INTEGER
44 * The leading dimension of the array A. LDA >= max(1,N).
45 *
46 * TAU (output) COMPLEX*16 array, dimension (N-1)
47 * The scalar factors of the elementary reflectors (see Further
48 * Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
49 * zero.
50 *
51 * WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
52 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
53 *
54 * LWORK (input) INTEGER
55 * The length of the array WORK. LWORK >= max(1,N).
56 * For optimum performance LWORK >= N*NB, where NB is the
57 * optimal blocksize.
58 *
59 * If LWORK = -1, then a workspace query is assumed; the routine
60 * only calculates the optimal size of the WORK array, returns
61 * this value as the first entry of the WORK array, and no error
62 * message related to LWORK is issued by XERBLA.
63 *
64 * INFO (output) INTEGER
65 * = 0: successful exit
66 * < 0: if INFO = -i, the i-th argument had an illegal value.
67 *
68 * Further Details
69 * ===============
70 *
71 * The matrix Q is represented as a product of (ihi-ilo) elementary
72 * reflectors
73 *
74 * Q = H(ilo) H(ilo+1) . . . H(ihi-1).
75 *
76 * Each H(i) has the form
77 *
78 * H(i) = I - tau * v * v**H
79 *
80 * where tau is a complex scalar, and v is a complex vector with
81 * v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
82 * exit in A(i+2:ihi,i), and tau in TAU(i).
83 *
84 * The contents of A are illustrated by the following example, with
85 * n = 7, ilo = 2 and ihi = 6:
86 *
87 * on entry, on exit,
88 *
89 * ( a a a a a a a ) ( a a h h h h a )
90 * ( a a a a a a ) ( a h h h h a )
91 * ( a a a a a a ) ( h h h h h h )
92 * ( a a a a a a ) ( v2 h h h h h )
93 * ( a a a a a a ) ( v2 v3 h h h h )
94 * ( a a a a a a ) ( v2 v3 v4 h h h )
95 * ( a ) ( a )
96 *
97 * where a denotes an element of the original matrix A, h denotes a
98 * modified element of the upper Hessenberg matrix H, and vi denotes an
99 * element of the vector defining H(i).
100 *
101 * This file is a slight modification of LAPACK-3.0's DGEHRD
102 * subroutine incorporating improvements proposed by Quintana-Orti and
103 * Van de Geijn (2006). (See DLAHR2.)
104 *
105 * =====================================================================
106 *
107 * .. Parameters ..
108 INTEGER NBMAX, LDT
109 PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
110 COMPLEX*16 ZERO, ONE
111 PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
112 $ ONE = ( 1.0D+0, 0.0D+0 ) )
113 * ..
114 * .. Local Scalars ..
115 LOGICAL LQUERY
116 INTEGER I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
117 $ NBMIN, NH, NX
118 COMPLEX*16 EI
119 * ..
120 * .. Local Arrays ..
121 COMPLEX*16 T( LDT, NBMAX )
122 * ..
123 * .. External Subroutines ..
124 EXTERNAL ZAXPY, ZGEHD2, ZGEMM, ZLAHR2, ZLARFB, ZTRMM,
125 $ XERBLA
126 * ..
127 * .. Intrinsic Functions ..
128 INTRINSIC MAX, MIN
129 * ..
130 * .. External Functions ..
131 INTEGER ILAENV
132 EXTERNAL ILAENV
133 * ..
134 * .. Executable Statements ..
135 *
136 * Test the input parameters
137 *
138 INFO = 0
139 NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
140 LWKOPT = N*NB
141 WORK( 1 ) = LWKOPT
142 LQUERY = ( LWORK.EQ.-1 )
143 IF( N.LT.0 ) THEN
144 INFO = -1
145 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
146 INFO = -2
147 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
148 INFO = -3
149 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
150 INFO = -5
151 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
152 INFO = -8
153 END IF
154 IF( INFO.NE.0 ) THEN
155 CALL XERBLA( 'ZGEHRD', -INFO )
156 RETURN
157 ELSE IF( LQUERY ) THEN
158 RETURN
159 END IF
160 *
161 * Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
162 *
163 DO 10 I = 1, ILO - 1
164 TAU( I ) = ZERO
165 10 CONTINUE
166 DO 20 I = MAX( 1, IHI ), N - 1
167 TAU( I ) = ZERO
168 20 CONTINUE
169 *
170 * Quick return if possible
171 *
172 NH = IHI - ILO + 1
173 IF( NH.LE.1 ) THEN
174 WORK( 1 ) = 1
175 RETURN
176 END IF
177 *
178 * Determine the block size
179 *
180 NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
181 NBMIN = 2
182 IWS = 1
183 IF( NB.GT.1 .AND. NB.LT.NH ) THEN
184 *
185 * Determine when to cross over from blocked to unblocked code
186 * (last block is always handled by unblocked code)
187 *
188 NX = MAX( NB, ILAENV( 3, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
189 IF( NX.LT.NH ) THEN
190 *
191 * Determine if workspace is large enough for blocked code
192 *
193 IWS = N*NB
194 IF( LWORK.LT.IWS ) THEN
195 *
196 * Not enough workspace to use optimal NB: determine the
197 * minimum value of NB, and reduce NB or force use of
198 * unblocked code
199 *
200 NBMIN = MAX( 2, ILAENV( 2, 'ZGEHRD', ' ', N, ILO, IHI,
201 $ -1 ) )
202 IF( LWORK.GE.N*NBMIN ) THEN
203 NB = LWORK / N
204 ELSE
205 NB = 1
206 END IF
207 END IF
208 END IF
209 END IF
210 LDWORK = N
211 *
212 IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
213 *
214 * Use unblocked code below
215 *
216 I = ILO
217 *
218 ELSE
219 *
220 * Use blocked code
221 *
222 DO 40 I = ILO, IHI - 1 - NX, NB
223 IB = MIN( NB, IHI-I )
224 *
225 * Reduce columns i:i+ib-1 to Hessenberg form, returning the
226 * matrices V and T of the block reflector H = I - V*T*V**H
227 * which performs the reduction, and also the matrix Y = A*V*T
228 *
229 CALL ZLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
230 $ WORK, LDWORK )
231 *
232 * Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
233 * right, computing A := A - Y * V**H. V(i+ib,ib-1) must be set
234 * to 1
235 *
236 EI = A( I+IB, I+IB-1 )
237 A( I+IB, I+IB-1 ) = ONE
238 CALL ZGEMM( 'No transpose', 'Conjugate transpose',
239 $ IHI, IHI-I-IB+1,
240 $ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
241 $ A( 1, I+IB ), LDA )
242 A( I+IB, I+IB-1 ) = EI
243 *
244 * Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
245 * right
246 *
247 CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
248 $ 'Unit', I, IB-1,
249 $ ONE, A( I+1, I ), LDA, WORK, LDWORK )
250 DO 30 J = 0, IB-2
251 CALL ZAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
252 $ A( 1, I+J+1 ), 1 )
253 30 CONTINUE
254 *
255 * Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
256 * left
257 *
258 CALL ZLARFB( 'Left', 'Conjugate transpose', 'Forward',
259 $ 'Columnwise',
260 $ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
261 $ A( I+1, I+IB ), LDA, WORK, LDWORK )
262 40 CONTINUE
263 END IF
264 *
265 * Use unblocked code to reduce the rest of the matrix
266 *
267 CALL ZGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
268 WORK( 1 ) = IWS
269 *
270 RETURN
271 *
272 * End of ZGEHRD
273 *
274 END