1       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  2      $                   WORK, LWORK, RWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 11       DOUBLE PRECISION   RCOND
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), S( * )
 15       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZGELSS computes the minimum norm solution to a complex linear
 22 *  least squares problem:
 23 *
 24 *  Minimize 2-norm(| b - A*x |).
 25 *
 26 *  using the singular value decomposition (SVD) of A. A is an M-by-N
 27 *  matrix which may be rank-deficient.
 28 *
 29 *  Several right hand side vectors b and solution vectors x can be
 30 *  handled in a single call; they are stored as the columns of the
 31 *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
 32 *  X.
 33 *
 34 *  The effective rank of A is determined by treating as zero those
 35 *  singular values which are less than RCOND times the largest singular
 36 *  value.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  M       (input) INTEGER
 42 *          The number of rows of the matrix A. M >= 0.
 43 *
 44 *  N       (input) INTEGER
 45 *          The number of columns of the matrix A. N >= 0.
 46 *
 47 *  NRHS    (input) INTEGER
 48 *          The number of right hand sides, i.e., the number of columns
 49 *          of the matrices B and X. NRHS >= 0.
 50 *
 51 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 52 *          On entry, the M-by-N matrix A.
 53 *          On exit, the first min(m,n) rows of A are overwritten with
 54 *          its right singular vectors, stored rowwise.
 55 *
 56 *  LDA     (input) INTEGER
 57 *          The leading dimension of the array A. LDA >= max(1,M).
 58 *
 59 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 60 *          On entry, the M-by-NRHS right hand side matrix B.
 61 *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
 62 *          If m >= n and RANK = n, the residual sum-of-squares for
 63 *          the solution in the i-th column is given by the sum of
 64 *          squares of the modulus of elements n+1:m in that column.
 65 *
 66 *  LDB     (input) INTEGER
 67 *          The leading dimension of the array B.  LDB >= max(1,M,N).
 68 *
 69 *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
 70 *          The singular values of A in decreasing order.
 71 *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 72 *
 73 *  RCOND   (input) DOUBLE PRECISION
 74 *          RCOND is used to determine the effective rank of A.
 75 *          Singular values S(i) <= RCOND*S(1) are treated as zero.
 76 *          If RCOND < 0, machine precision is used instead.
 77 *
 78 *  RANK    (output) INTEGER
 79 *          The effective rank of A, i.e., the number of singular values
 80 *          which are greater than RCOND*S(1).
 81 *
 82 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 83 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 84 *
 85 *  LWORK   (input) INTEGER
 86 *          The dimension of the array WORK. LWORK >= 1, and also:
 87 *          LWORK >=  2*min(M,N) + max(M,N,NRHS)
 88 *          For good performance, LWORK should generally be larger.
 89 *
 90 *          If LWORK = -1, then a workspace query is assumed; the routine
 91 *          only calculates the optimal size of the WORK array, returns
 92 *          this value as the first entry of the WORK array, and no error
 93 *          message related to LWORK is issued by XERBLA.
 94 *
 95 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (5*min(M,N))
 96 *
 97 *  INFO    (output) INTEGER
 98 *          = 0:  successful exit
 99 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
100 *          > 0:  the algorithm for computing the SVD failed to converge;
101 *                if INFO = i, i off-diagonal elements of an intermediate
102 *                bidiagonal form did not converge to zero.
103 *
104 *  =====================================================================
105 *
106 *     .. Parameters ..
107       DOUBLE PRECISION   ZERO, ONE
108       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
109       COMPLEX*16         CZERO, CONE
110       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
111      $                   CONE = ( 1.0D+00.0D+0 ) )
112 *     ..
113 *     .. Local Scalars ..
114       LOGICAL            LQUERY
115       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
116      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
117      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
118       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
119 *     ..
120 *     .. Local Arrays ..
121       COMPLEX*16         VDUM( 1 )
122 *     ..
123 *     .. External Subroutines ..
124       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
125      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
126      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
127      $                   ZUNMQR
128 *     ..
129 *     .. External Functions ..
130       INTEGER            ILAENV
131       DOUBLE PRECISION   DLAMCH, ZLANGE
132       EXTERNAL           ILAENV, DLAMCH, ZLANGE
133 *     ..
134 *     .. Intrinsic Functions ..
135       INTRINSIC          MAXMIN
136 *     ..
137 *     .. Executable Statements ..
138 *
139 *     Test the input arguments
140 *
141       INFO = 0
142       MINMN = MIN( M, N )
143       MAXMN = MAX( M, N )
144       LQUERY = ( LWORK.EQ.-1 )
145       IF( M.LT.0 ) THEN
146          INFO = -1
147       ELSE IF( N.LT.0 ) THEN
148          INFO = -2
149       ELSE IF( NRHS.LT.0 ) THEN
150          INFO = -3
151       ELSE IF( LDA.LT.MAX1, M ) ) THEN
152          INFO = -5
153       ELSE IF( LDB.LT.MAX1, MAXMN ) ) THEN
154          INFO = -7
155       END IF
156 *
157 *     Compute workspace
158 *      (Note: Comments in the code beginning "Workspace:" describe the
159 *       minimal amount of workspace needed at that point in the code,
160 *       as well as the preferred amount for good performance.
161 *       CWorkspace refers to complex workspace, and RWorkspace refers
162 *       to real workspace. NB refers to the optimal block size for the
163 *       immediately following subroutine, as returned by ILAENV.)
164 *
165       IF( INFO.EQ.0 ) THEN
166          MINWRK = 1
167          MAXWRK = 1
168          IF( MINMN.GT.0 ) THEN
169             MM = M
170             MNTHR = ILAENV( 6'ZGELSS'' ', M, N, NRHS, -1 )
171             IF( M.GE..AND. M.GE.MNTHR ) THEN
172 *
173 *              Path 1a - overdetermined, with many more rows than
174 *                        columns
175 *
176                MM = N
177                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1'ZGEQRF'' ', M,
178      $                       N, -1-1 ) )
179                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1'ZUNMQR''LC',
180      $                       M, NRHS, N, -1 ) )
181             END IF
182             IF( M.GE.N ) THEN
183 *
184 *              Path 1 - overdetermined or exactly determined
185 *
186                MAXWRK = MAX( MAXWRK, 2*+ ( MM + N )*ILAENV( 1,
187      $                       'ZGEBRD'' ', MM, N, -1-1 ) )
188                MAXWRK = MAX( MAXWRK, 2*+ NRHS*ILAENV( 1'ZUNMBR',
189      $                       'QLC', MM, NRHS, N, -1 ) )
190                MAXWRK = MAX( MAXWRK, 2*+ ( N - 1 )*ILAENV( 1,
191      $                       'ZUNGBR''P', N, N, N, -1 ) )
192                MAXWRK = MAX( MAXWRK, N*NRHS )
193                MINWRK = 2*+ MAX( NRHS, M )
194             END IF
195             IF( N.GT.M ) THEN
196                MINWRK = 2*+ MAX( NRHS, N )
197                IF( N.GE.MNTHR ) THEN
198 *
199 *                 Path 2a - underdetermined, with many more columns
200 *                 than rows
201 *
202                   MAXWRK = M + M*ILAENV( 1'ZGELQF'' ', M, N, -1,
203      $                     -1 )
204                   MAXWRK = MAX( MAXWRK, 3*+ M*+ 2*M*ILAENV( 1,
205      $                          'ZGEBRD'' ', M, M, -1-1 ) )
206                   MAXWRK = MAX( MAXWRK, 3*+ M*+ NRHS*ILAENV( 1,
207      $                          'ZUNMBR''QLC', M, NRHS, M, -1 ) )
208                   MAXWRK = MAX( MAXWRK, 3*+ M*+ ( M - 1 )*ILAENV( 1,
209      $                          'ZUNGBR''P', M, M, M, -1 ) )
210                   IF( NRHS.GT.1 ) THEN
211                      MAXWRK = MAX( MAXWRK, M*+ M + M*NRHS )
212                   ELSE
213                      MAXWRK = MAX( MAXWRK, M*+ 2*M )
214                   END IF
215                   MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1'ZUNMLQ',
216      $                          'LC', N, NRHS, M, -1 ) )
217                ELSE
218 *
219 *                 Path 2 - underdetermined
220 *
221                   MAXWRK = 2*+ ( N + M )*ILAENV( 1'ZGEBRD'' ', M,
222      $                     N, -1-1 )
223                   MAXWRK = MAX( MAXWRK, 2*+ NRHS*ILAENV( 1'ZUNMBR',
224      $                          'QLC', M, NRHS, M, -1 ) )
225                   MAXWRK = MAX( MAXWRK, 2*+ M*ILAENV( 1'ZUNGBR',
226      $                          'P', M, N, M, -1 ) )
227                   MAXWRK = MAX( MAXWRK, N*NRHS )
228                END IF
229             END IF
230             MAXWRK = MAX( MINWRK, MAXWRK )
231          END IF
232          WORK( 1 ) = MAXWRK
233 *
234          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
235      $      INFO = -12
236       END IF
237 *
238       IF( INFO.NE.0 ) THEN
239          CALL XERBLA( 'ZGELSS'-INFO )
240          RETURN
241       ELSE IF( LQUERY ) THEN
242          RETURN
243       END IF
244 *
245 *     Quick return if possible
246 *
247       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
248          RANK = 0
249          RETURN
250       END IF
251 *
252 *     Get machine parameters
253 *
254       EPS = DLAMCH( 'P' )
255       SFMIN = DLAMCH( 'S' )
256       SMLNUM = SFMIN / EPS
257       BIGNUM = ONE / SMLNUM
258       CALL DLABAD( SMLNUM, BIGNUM )
259 *
260 *     Scale A if max element outside range [SMLNUM,BIGNUM]
261 *
262       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
263       IASCL = 0
264       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
265 *
266 *        Scale matrix norm up to SMLNUM
267 *
268          CALL ZLASCL( 'G'00, ANRM, SMLNUM, M, N, A, LDA, INFO )
269          IASCL = 1
270       ELSE IF( ANRM.GT.BIGNUM ) THEN
271 *
272 *        Scale matrix norm down to BIGNUM
273 *
274          CALL ZLASCL( 'G'00, ANRM, BIGNUM, M, N, A, LDA, INFO )
275          IASCL = 2
276       ELSE IF( ANRM.EQ.ZERO ) THEN
277 *
278 *        Matrix all zero. Return zero solution.
279 *
280          CALL ZLASET( 'F'MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
281          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
282          RANK = 0
283          GO TO 70
284       END IF
285 *
286 *     Scale B if max element outside range [SMLNUM,BIGNUM]
287 *
288       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
289       IBSCL = 0
290       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
291 *
292 *        Scale matrix norm up to SMLNUM
293 *
294          CALL ZLASCL( 'G'00, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
295          IBSCL = 1
296       ELSE IF( BNRM.GT.BIGNUM ) THEN
297 *
298 *        Scale matrix norm down to BIGNUM
299 *
300          CALL ZLASCL( 'G'00, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
301          IBSCL = 2
302       END IF
303 *
304 *     Overdetermined case
305 *
306       IF( M.GE.N ) THEN
307 *
308 *        Path 1 - overdetermined or exactly determined
309 *
310          MM = M
311          IF( M.GE.MNTHR ) THEN
312 *
313 *           Path 1a - overdetermined, with many more rows than columns
314 *
315             MM = N
316             ITAU = 1
317             IWORK = ITAU + N
318 *
319 *           Compute A=Q*R
320 *           (CWorkspace: need 2*N, prefer N+N*NB)
321 *           (RWorkspace: none)
322 *
323             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
324      $                   LWORK-IWORK+1, INFO )
325 *
326 *           Multiply B by transpose(Q)
327 *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
328 *           (RWorkspace: none)
329 *
330             CALL ZUNMQR( 'L''C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
331      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
332 *
333 *           Zero out below R
334 *
335             IF( N.GT.1 )
336      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 21 ),
337      $                      LDA )
338          END IF
339 *
340          IE = 1
341          ITAUQ = 1
342          ITAUP = ITAUQ + N
343          IWORK = ITAUP + N
344 *
345 *        Bidiagonalize R in A
346 *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
347 *        (RWorkspace: need N)
348 *
349          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
350      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
351      $                INFO )
352 *
353 *        Multiply B by transpose of left bidiagonalizing vectors of R
354 *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
355 *        (RWorkspace: none)
356 *
357          CALL ZUNMBR( 'Q''L''C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
358      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
359 *
360 *        Generate right bidiagonalizing vectors of R in A
361 *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
362 *        (RWorkspace: none)
363 *
364          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
365      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
366          IRWORK = IE + N
367 *
368 *        Perform bidiagonal QR iteration
369 *          multiply B by transpose of left singular vectors
370 *          compute right singular vectors in A
371 *        (CWorkspace: none)
372 *        (RWorkspace: need BDSPAC)
373 *
374          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
375      $                1, B, LDB, RWORK( IRWORK ), INFO )
376          IF( INFO.NE.0 )
377      $      GO TO 70
378 *
379 *        Multiply B by reciprocals of singular values
380 *
381          THR = MAX( RCOND*S( 1 ), SFMIN )
382          IF( RCOND.LT.ZERO )
383      $      THR = MAX( EPS*S( 1 ), SFMIN )
384          RANK = 0
385          DO 10 I = 1, N
386             IF( S( I ).GT.THR ) THEN
387                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
388                RANK = RANK + 1
389             ELSE
390                CALL ZLASET( 'F'1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
391             END IF
392    10    CONTINUE
393 *
394 *        Multiply B by right singular vectors
395 *        (CWorkspace: need N, prefer N*NRHS)
396 *        (RWorkspace: none)
397 *
398          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
399             CALL ZGEMM( 'C''N', N, NRHS, N, CONE, A, LDA, B, LDB,
400      $                  CZERO, WORK, LDB )
401             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
402          ELSE IF( NRHS.GT.1 ) THEN
403             CHUNK = LWORK / N
404             DO 20 I = 1, NRHS, CHUNK
405                BL = MIN( NRHS-I+1, CHUNK )
406                CALL ZGEMM( 'C''N', N, BL, N, CONE, A, LDA, B( 1, I ),
407      $                     LDB, CZERO, WORK, N )
408                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
409    20       CONTINUE
410          ELSE
411             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
412             CALL ZCOPY( N, WORK, 1, B, 1 )
413          END IF
414 *
415       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
416      $          THEN
417 *
418 *        Underdetermined case, M much less than N
419 *
420 *        Path 2a - underdetermined, with many more columns than rows
421 *        and sufficient workspace for an efficient algorithm
422 *
423          LDWORK = M
424          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
425      $      LDWORK = LDA
426          ITAU = 1
427          IWORK = M + 1
428 *
429 *        Compute A=L*Q
430 *        (CWorkspace: need 2*M, prefer M+M*NB)
431 *        (RWorkspace: none)
432 *
433          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
434      $                LWORK-IWORK+1, INFO )
435          IL = IWORK
436 *
437 *        Copy L to WORK(IL), zeroing out above it
438 *
439          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
440          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
441      $                LDWORK )
442          IE = 1
443          ITAUQ = IL + LDWORK*M
444          ITAUP = ITAUQ + M
445          IWORK = ITAUP + M
446 *
447 *        Bidiagonalize L in WORK(IL)
448 *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
449 *        (RWorkspace: need M)
450 *
451          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
452      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
453      $                LWORK-IWORK+1, INFO )
454 *
455 *        Multiply B by transpose of left bidiagonalizing vectors of L
456 *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
457 *        (RWorkspace: none)
458 *
459          CALL ZUNMBR( 'Q''L''C', M, NRHS, M, WORK( IL ), LDWORK,
460      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
461      $                LWORK-IWORK+1, INFO )
462 *
463 *        Generate right bidiagonalizing vectors of R in WORK(IL)
464 *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
465 *        (RWorkspace: none)
466 *
467          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
468      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
469          IRWORK = IE + M
470 *
471 *        Perform bidiagonal QR iteration, computing right singular
472 *        vectors of L in WORK(IL) and multiplying B by transpose of
473 *        left singular vectors
474 *        (CWorkspace: need M*M)
475 *        (RWorkspace: need BDSPAC)
476 *
477          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
478      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
479          IF( INFO.NE.0 )
480      $      GO TO 70
481 *
482 *        Multiply B by reciprocals of singular values
483 *
484          THR = MAX( RCOND*S( 1 ), SFMIN )
485          IF( RCOND.LT.ZERO )
486      $      THR = MAX( EPS*S( 1 ), SFMIN )
487          RANK = 0
488          DO 30 I = 1, M
489             IF( S( I ).GT.THR ) THEN
490                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
491                RANK = RANK + 1
492             ELSE
493                CALL ZLASET( 'F'1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
494             END IF
495    30    CONTINUE
496          IWORK = IL + M*LDWORK
497 *
498 *        Multiply B by right singular vectors of L in WORK(IL)
499 *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
500 *        (RWorkspace: none)
501 *
502          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
503             CALL ZGEMM( 'C''N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
504      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
505             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
506          ELSE IF( NRHS.GT.1 ) THEN
507             CHUNK = ( LWORK-IWORK+1 ) / M
508             DO 40 I = 1, NRHS, CHUNK
509                BL = MIN( NRHS-I+1, CHUNK )
510                CALL ZGEMM( 'C''N', M, BL, M, CONE, WORK( IL ), LDWORK,
511      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
512                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
513      $                      LDB )
514    40       CONTINUE
515          ELSE
516             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 11 ),
517      $                  1, CZERO, WORK( IWORK ), 1 )
518             CALL ZCOPY( M, WORK( IWORK ), 1, B( 11 ), 1 )
519          END IF
520 *
521 *        Zero out below first M rows of B
522 *
523          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+11 ), LDB )
524          IWORK = ITAU + M
525 *
526 *        Multiply transpose(Q) by B
527 *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
528 *        (RWorkspace: none)
529 *
530          CALL ZUNMLQ( 'L''C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
531      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
532 *
533       ELSE
534 *
535 *        Path 2 - remaining underdetermined cases
536 *
537          IE = 1
538          ITAUQ = 1
539          ITAUP = ITAUQ + M
540          IWORK = ITAUP + M
541 *
542 *        Bidiagonalize A
543 *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
544 *        (RWorkspace: need N)
545 *
546          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
547      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
548      $                INFO )
549 *
550 *        Multiply B by transpose of left bidiagonalizing vectors
551 *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
552 *        (RWorkspace: none)
553 *
554          CALL ZUNMBR( 'Q''L''C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
555      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
556 *
557 *        Generate right bidiagonalizing vectors in A
558 *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
559 *        (RWorkspace: none)
560 *
561          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
562      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
563          IRWORK = IE + M
564 *
565 *        Perform bidiagonal QR iteration,
566 *           computing right singular vectors of A in A and
567 *           multiplying B by transpose of left singular vectors
568 *        (CWorkspace: none)
569 *        (RWorkspace: need BDSPAC)
570 *
571          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
572      $                1, B, LDB, RWORK( IRWORK ), INFO )
573          IF( INFO.NE.0 )
574      $      GO TO 70
575 *
576 *        Multiply B by reciprocals of singular values
577 *
578          THR = MAX( RCOND*S( 1 ), SFMIN )
579          IF( RCOND.LT.ZERO )
580      $      THR = MAX( EPS*S( 1 ), SFMIN )
581          RANK = 0
582          DO 50 I = 1, M
583             IF( S( I ).GT.THR ) THEN
584                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
585                RANK = RANK + 1
586             ELSE
587                CALL ZLASET( 'F'1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
588             END IF
589    50    CONTINUE
590 *
591 *        Multiply B by right singular vectors of A
592 *        (CWorkspace: need N, prefer N*NRHS)
593 *        (RWorkspace: none)
594 *
595          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
596             CALL ZGEMM( 'C''N', N, NRHS, M, CONE, A, LDA, B, LDB,
597      $                  CZERO, WORK, LDB )
598             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
599          ELSE IF( NRHS.GT.1 ) THEN
600             CHUNK = LWORK / N
601             DO 60 I = 1, NRHS, CHUNK
602                BL = MIN( NRHS-I+1, CHUNK )
603                CALL ZGEMM( 'C''N', N, BL, M, CONE, A, LDA, B( 1, I ),
604      $                     LDB, CZERO, WORK, N )
605                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
606    60       CONTINUE
607          ELSE
608             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
609             CALL ZCOPY( N, WORK, 1, B, 1 )
610          END IF
611       END IF
612 *
613 *     Undo scaling
614 *
615       IF( IASCL.EQ.1 ) THEN
616          CALL ZLASCL( 'G'00, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
617          CALL DLASCL( 'G'00, SMLNUM, ANRM, MINMN, 1, S, MINMN,
618      $                INFO )
619       ELSE IF( IASCL.EQ.2 ) THEN
620          CALL ZLASCL( 'G'00, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
621          CALL DLASCL( 'G'00, BIGNUM, ANRM, MINMN, 1, S, MINMN,
622      $                INFO )
623       END IF
624       IF( IBSCL.EQ.1 ) THEN
625          CALL ZLASCL( 'G'00, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
626       ELSE IF( IBSCL.EQ.2 ) THEN
627          CALL ZLASCL( 'G'00, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
628       END IF
629    70 CONTINUE
630       WORK( 1 ) = MAXWRK
631       RETURN
632 *
633 *     End of ZGELSS
634 *
635       END